Abstract:
A semiconductor substrate has active areas bounded by portions of an insulating layer. A thin layer of tunnel oxide is formed on the substrate and a first layer of conductive material is then deposited. Non-volatile memory cells are manufactured thereon by defining floating gate regions. The definition of these floating gate regions involves defining the first layer of conductive material in order to form a plurality of alternated stripes above pairs of active areas alternated by active areas lacking stripes. Spacers are then formed in the shelter of the side walls of the alternated stripes. A second layer of conductive material is then deposited together with the first layer of conductive material. The spacers are then selectively removed.
Abstract:
Process for forming salicide on active areas of MOS transistors, each MOS transistor comprising a gate and respective source and drain regions, the source and drain regions each comprising a first lightly doped sub-region adjacent the gate and a second highly doped sub-region spaced apart from the gate. The salicide is formed selectively at least over the second highly doped sub-regions of the source and drain regions of the MOS transistors, and not over the first lightly doped sub-region.
Abstract:
A process of fabricating a floating-gate memory device, the process including the steps of: forming a stack of superimposed layers including a floating gate region, a dielectric region, and a control gate region; and forming an insulating layer of oxynitride to the side of the floating gate region to completely seal the floating gate region outwards and improve the retention characteristics of the memory device. The insulating layer is formed during reoxidation of the sides of the floating gate region, after self-align etching the stack of layers and implanting the source/drain of the cell.
Abstract:
A method is described for manufacturing non-volatile memory cells on a semiconductive substrate having active areas bounded by portions of an insulating layer. A thin layer of tunnel oxide is formed and a first layer of conductive material is then deposited. A plurality of floating gate regions are defined by forming stripes of shielding material only above pairs of alternated active areas. Spacers of a selective material are defined with respect to the shielding material and of small width at will in the shelter of the side walls of the stripes thus defined. A shielding material is also deposited on the active areas which lacked it. The formation of the floating gate is completed by leaving the definition of the distance between the floating gate regions to the spacers.