Abstract:
A voltage regulator circuit includes a first voltage regulator having a first output voltage selection pin set and producing a first output voltage based on a first digital signal received at the first output voltage selection pin set, and a second voltage regulator having a second output voltage selection pin set and producing a second output voltage based on a second digital signal received at the second output voltage selection pin set. The first and second voltage regulators are operable in a voltage tracking mode with the output voltage of the second voltage regulator tracking the output voltage of the first voltage regulator when digital signals received at the selection pin sets have a same value. An overvoltage sensor detects overvoltage events at the first voltage regulator. Control circuitry selectively avoids operation in voltage tracking mode as a result of an overvoltage event detected at the first voltage regulator.
Abstract:
An electronic system for driving a lamp of a blinker of a vehicle may include a switch having a first input terminal configured to receive a battery voltage, a second input control terminal configured to receive a control signal for operating the switch, and an output terminal. The system may also include a change-over switch configured to connect, alternatively, the output terminal of the switch to the lamp and to a high impedance reference. The system may also include an electronic device connected to the switch and configured to detect a voltage drop between the first input terminal and the output terminal, and, based upon the voltage drop, generate the control signal to have a value to maintain the switch open for a time interval, and generate the control signal to have a second value to maintain the switch closed for another time interval.
Abstract:
An H-bridge circuit includes a supply voltage node, a first pair of transistors and a second pair of transistors. First transistors in each pair have the current paths therethrough included in current flow lines between the supply node and, respectively, a first output node and a second output node. Second transistors in each pair have the current paths therethrough coupled to a third output node and a fourth output node, respectively. The first and third output nodes are mutually isolated from each other and the second and fourth output nodes are mutually isolated from each other. The H-bridge circuit is operable in a selected one of a first, second and third mode.
Abstract:
The power supply device comprises a supply transistor commanded by a command signal and providing electric power to a lighting module, and a driving means configured to selectively generate, depending on an instruction signal representative of the structure of said at least one lighting module, a first command signal able to command the supply transistor into an ohmic regime, a second command signal able to command the supply transistor into a pulse width modulation regime involving an alternation of ohmic regimes and blocked regimes, and a third command signal able to command the supply transistor into a saturated regime.
Abstract:
The power supply device comprises a supply transistor commanded by a command signal and providing electric power to a lighting module, and a driving means configured to selectively generate, depending on an instruction signal representative of the structure of said at least one lighting module, a first command signal able to command the supply transistor into an ohmic regime, a second command signal able to command the supply transistor into a pulse width modulation regime involving an alternation of ohmic regimes and blocked regimes, and a third command signal able to command the supply transistor into a saturated regime.
Abstract:
A pre-driving stage drives one or more Field Effect Transistors in a power stage driving a load. A method for measuring current flowing in the Field Effect Transistors includes: measuring drain to source voltages of the one or more Field Effect Transistor; and measuring an operating temperature of the one or more Field Effect Transistor. The current flowing in the Field Effect Transistors is measured by: calculating the respective on drain to source resistance at the operating temperature as a function of the measured operating temperature and obtaining the current value as a ratio of the respective measured drain to source voltage over the calculated drain to source resistance at the operating temperature.
Abstract:
An H-bridge circuit includes a supply voltage node, a first pair of transistors and a second pair of transistors. First transistors in each pair have the current paths therethrough included in current flow lines between the supply node and, respectively, a first output node and a second output node. Second transistors in each pair have the current paths therethrough coupled to a third output node and a fourth output node, respectively. The first and third output nodes are mutually isolated from each other and the second and fourth output nodes are mutually isolated from each other. The H-bridge circuit is operable in a selected one of a first, second and third mode.