Abstract:
An asynchronous pipeline circuit includes: a first processing stage including a first data latch configured to generate a request signal; a second processing stage downstream the first processing stage and including a second data latch; and a programmable delay line coupled between the first data latch and the second processing stage. The programmable delay line is configured to receive the request signal from the first data latch and to generate a delayed request signal by randomly delaying the request signal on each data transfer from the first data latch to the second data latch.
Abstract:
An asynchronous pipeline circuit includes: a first processing stage including a first data latch configured to generate a request signal; a second processing stage downstream the first processing stage and including a second data latch; and a programmable delay line coupled between the first data latch and the second processing stage. The programmable delay line is configured to receive the request signal from the first data latch and to generate a delayed request signal by randomly delaying the request signal on each data transfer from the first data latch to the second data latch.
Abstract:
According to one aspect, an embodiment radio frequency receiver device comprises an input interface configured to receive a radio frequency signal of a given type and convert same into an electric signal, a detector configured to detect at least one voltage level in the electric signal, a pulse generator configured to generate at least one pulse train representative of the voltage levels detected, and a processing unit configured to determine the type of the radio frequency signal from the at least one pulse train.
Abstract:
A first assembly of critical cells is to be monitored. An equivalent capacitance of output cells coupled to the critical path is determined. Logic level inputs of the critical cells for signal propagation are also determined. A second assembly of control logic cells is provided which copies the first assembly in terms of number of cells, type of cells and cell connection such that each of the control cells is a homolog of a corresponding critical cell. Charge cells are provided at the outputs of the control cells having an equivalent capacitance in accordance with the determined capacitance of the output cells. For each control cell, logic levels are asserted in accordance with the determined configuration of the critical path. A signal generator applies a signal the input of the second assembly and a signal receiver is coupled to the output of the second assembly.
Abstract:
According to one aspect, an embodiment radio frequency receiver device comprises an input interface configured to receive a radio frequency signal of a given type and convert same into an electric signal, a detector configured to detect at least one voltage level in the electric signal, a pulse generator configured to generate at least one pulse train representative of the voltage levels detected, and a processing unit configured to determine the type of the radio frequency signal from the at least one pulse train.
Abstract:
A standard cell layout for a data storage circuit includes a latch and an initialization circuit. Metallization levels over the standard cell layout support circuit interconnections. At least one metallization level is provided for metal programming of an initialization configuration of the data storage circuit. The at least one metallization level may have: a first wiring layout for interconnecting the initialization circuit to the latch for configuration programming of the data storage circuit as an initialization in reset device (assertion of an initialization signal causing the data storage circuit data output to be reset), or a second wiring layout for interconnecting the initialization circuit to the latch for configuration programming of the data storage circuit as an initialization in set device (assertion of the initialization signal causing the data storage circuit data output to be set).
Abstract:
According to one aspect, an embodiment radio frequency receiver device comprises an input interface configured to receive a radio frequency signal of a given type and convert same into an electric signal, a detector configured to detect at least one voltage level in the electric signal, a pulse generator configured to generate at least one pulse train representative of the voltage levels detected, and a processing unit configured to determine the type of the radio frequency signal from the at least one pulse train.
Abstract:
According to one aspect, an embodiment radio frequency receiver device comprises an input interface configured to receive a radio frequency signal of a given type and convert same into an electric signal, a detector configured to detect at least one voltage level in the electric signal, a pulse generator configured to generate at least one pulse train representative of the voltage levels detected, and a processing unit configured to determine the type of the radio frequency signal from the at least one pulse train.
Abstract:
An electronic device includes an integrated circuit with a MOS transistor and a heating circuit electrically coupled to at least two points of one of the source or drain semiconductive region of the transistor. A portion of the source or drain semiconductive region between the two points forms a resistive element. The heating circuit is configured to cause a current to circulate through the resistive element between the two points to heat an active region of the transistor.
Abstract:
An electronic device includes an integrated circuit with a MOS transistor and a heating circuit electrically coupled to at least two points of one of the source or drain semiconductive region of the transistor. A portion of the source or drain semiconductive region between the two points forms a resistive element. The heating circuit is configured to cause a current to circulate through the resistive element between the two points to heat an active region of the transistor.