Abstract:
An electrochemical cell, including a jelly-roll type electrode stack, and a method for making such cell. The electrochemical cell includes folded electrode portions which form a plane recessed from the end of the electrode stack. The folded electrode portions are preferably formed by making pairs of slits in the electrode end and bending over the electrode portions between each pair of slits. The recessed plane forms a large area to which a current collection tab is subsequently connected. A coating may be applied to the folded portions of the electrode to further increase the contact area with the current collection tab by eliminating the slight variations in the recessed plane which are due to the overlap of the folded electrode portions.
Abstract:
An electrochemical cell, including a jelly-roll type electrode stack, and a method for making such cell. The electrochemical cell includes folded electrode portions which form a plane recessed from the end of the electrode stack. The folded electrode portions are preferably formed by making pairs of slits in the electrode end and bending over the electrode portions between each pair of slits. The recessed plane forms a large area to which a current collection tab is subsequently connected. A coating may be applied to the folded portions of the electrode to further increase the contact area with the current collection tab by eliminating the slight variations in the recessed plane which are due to the overlap of the folded electrode portions.
Abstract:
A stand alone battery module including: (a) a mechanical configuration; (b) a thermal management configuration; (c) an electrical connection configuration; and (d) an electronics configuration. Such a module is fully interchangeable in a battery pack assembly, mechanically, from the thermal management point of view, and electrically. With the same hardware, the module can accommodate different cell sizes and, therefore, can easily have different capacities. The module structure is designed to accommodate the electronics monitoring, protection, and printed wiring assembly boards (PWAs), as well as to allow airflow through the module. A plurality of modules may easily be connected together to form a battery pack. The parts of the module are designed to facilitate their manufacture and assembly.
Abstract:
A method of making an electrochemical cell, and an electrode stack made thereby. The method includes fabrication of a coating onto selected areas of the ends of the stack by a thermal spray coating process in which the coating is applied to one of the electrodes in the stack without the coating contacting the alternate edges of the other electrode in the stack. Suitable conductive strips, compatible with the substrate materials that make up the electrodes of the cell, can be attached to the thermally sprayed coating layers, or can be embedded into the sprayed materials as they are applied to the electrode stack.
Abstract:
An electrochemical cell having a spiral winding around a central core, wherein the central core is provided with longitudinal grooves on its outer surface to facilitate electrolyte filing and accommodate overpressure. The core itself improves dissipation of heat generated along the center of the cell, and the hollow core design allows the cell core to have a larger radius, permitting the "jelly roll" winding to begin at a larger radius and thereby facilitate the initial turns of the winding by decreasing the amount of bending required of the electrode laminate at the beginning of the winding operation. The hollow core also provides mechanical support end-to-end. A pair of washers are used at each end of the cell to sandwich current collection tabs in a manner that improves electrical and thermal conductivity while also providing structural integrity.
Abstract:
A localized surface area of an open foam type metal substrate of an electrochemical cell electrode, where the substrate is filled with active material and compressed, is subjected to light pressure scrubbing by a heated soldering iron tip subjected to ultrasonic vibration to quickly dislodge the active material network of the open foam type metal substrate. Compressed air at approximately 100 psi is blown through the open foam type metal substrate to remove dislodged active material particles from the foam type metal substrate to permit effective welding of a metal terminal connection to the substrate at the localized area after cleaning. Alternatively, both opposite surfaces of the open foam type metal substrate at the localized area may be brushed to initially dislodge the active material from the pores of the open foam type metal substrate and the dislodged particles blown through the substrate from one surface to the other. Preferably, suction is applied to the opposite surface of the substrate from that subjected to the compressed air blowing to facilitate the removal of dislodged particles of active material.