摘要:
A thermoelectric power generation device is disclosed using one or more mechanically compliant and thermally and electrically conductive layers at the thermoelectric material interfaces to accommodate high temperature differentials and stresses induced thereby. The compliant material may be metal foam or metal graphite composite (e.g. using nickel) and is particularly beneficial in high temperature thermoelectric generators employing Zintl thermoelectric materials. The compliant material may be disposed between the thermoelectric segments of the device or between a thermoelectric segment and the hot or cold side interconnect of the device.
摘要:
A thermoelectric power generation device is disclosed using one or more mechanically compliant and thermally and electrically conductive layers at the thermoelectric material interfaces to accommodate high temperature differentials and stresses induced thereby. The compliant material may be metal foam or metal graphite composite (e.g. using nickel) and is particularly beneficial in high temperature thermoelectric generators employing Zintl thermoelectric materials. The compliant material may be disposed between the thermoelectric segments of the device or between a thermoelectric segment and the hot or cold side interconnect of the device.
摘要:
A thermoelectric power generation technique is disclosed using one or more mechanically compliant and thermally and electrically conductive layers at the thermoelectric material interfaces to accommodate high temperature differentials and stresses induced thereby. The compliant material may be metal foam or metal graphite composite (e.g. using nickel) and is particularly beneficial in high temperature thermoelectric generators employing Zintl thermoelectric materials. The compliant material may be disposed between the thermoelectric segments of the device or between a thermoelectric segment and the hot or cold side interconnect of the device.
摘要:
A thermoelectric power generation device using molybdenum metallization to a Zintl thermoelectric material in a thermoelectric power generation device operating at high temperature, e.g. at or above 1000° C., is disclosed. The Zintl thermoelectric material may comprise Yb14MnSb11. A thin molybdenum metallization layer of approximately 5 microns or less may be employed. The thin molybdenum layer may be applied in a foil under high pressure, e.g. 1800 psi, at high temperature, e.g. 1000° C. The metallization layer may then be bonded or brazed to other components, such as heat collectors or current carrying electrodes, of the thermoelectric power generation device.
摘要:
The present invention relates to a high-temperature thermoelectric couple and the method for making the same. The method requires a very small number of fabrication steps. It includes an act of fabricating an n-type leg that, in a stacked configuration, includes a low electrical contact resistance metallization foil that is connected to each of the two sides of Lanthanum Telluride via a thin metallic adhesion layer. Additionally, a p-type leg is fabricated that, in a stacked configuration, includes a low electrical contact resistance metallization foil that is connected to each of the two sides of 14-1-11 Zintl. Finally, CTE-matched, low electrical and thermal resistance plate interconnects are used for each of the two legs to interface with the heat source and heat sink and form an electrical connection.
摘要:
This invention relates generally to a novel directed metal oxidation process which is utilized to produce self-supporting bodies. In some of the more specific aspects of the invention, a parent metal (e.g., a parent metal vapor) is induced to react with at least one solid oxidant-containing material to result in the directed growth of a reaction product which is formed from a reaction between the parent metal and the solid oxidant-containing material. The inventive process can be utilized to form bodies having substantially homogeneous compositions, graded compositions, and macrocomposite bodies.
摘要:
This invention relates generally to a novel directed metal oxidation process which is utilized to produce self-supporting bodies. In some of the more specific aspects of the invention, a parent metal (e.g., a parent metal vapor) is induced to react with at least one solid oxidant-containing material to result in the directed growth of a reaction product which is formed from a reaction between the parent metal and the solid oxidant-containing material. The inventive process can be utilized to form bodies having substantially homogeneous compositions, graded compositions, and macrocomposite bodies.
摘要:
This invention relates generally to a novel directed metal oxidation process which is utilized to produce self-supporting bodies. In some of the more specific aspects of the invention, a parent metal vapor is induced to react with a solid oxidant to result in the directed growth of a reaction product which is formed from a reaction between the parent metal vapor and the solid oxidant. The inventive process can be utilized to form bodies having substantially homogeneous compositions, graded compositions, and macrocomposite bodies.
摘要:
This invention relates generally to a novel method of manufacturing a composite body. More particularly, the present invention relates to a method for modifying the resultant properties of a composite body, by, for example, minimizing the amount of porosity present in the composite body. Moreover, additives, whether used alone or in combination, (1) can be admixed with the permeable mass, (2) can be mixed or alloyed with the parent metal, (3) can be placed at an interface between the parent metal and the preform or mass of filler material, (4) or any combination of the aforementioned methods, to modify properties of the resultant composite body. Particularly, additives such as VC, NbC, WC, W.sub.2 B.sub.5, TaC, ZrC, ZrB.sub.2, SiB.sub.6, SiC, MgO, Al.sub.2 O.sub.3, ZrO.sub.2, CeO.sub.2, Y.sub.2 O.sub.3, La.sub.2 O.sub.3, MgAl.sub.2 O.sub.4, HfO.sub.2, ZrSiO.sub.4, Yb.sub.2 O.sub.3 and Mo.sub.2 B.sub.5 can be combined with the permeable mass in an amount of about 5-50 percent by weight, prior to reactively infiltrating the permeable mass. Moreover, an additive may also include substantially pure elemental metals (e.g., Nb, Ti, Hf, V, Ta, Cr, Mo, Al, Cr, Si, Co and W) which may be provided by any of the methods discussed above herein.
摘要:
The present invention relates to modifying the properties of a metal matrix composite body by a post formation process modification treatment. The post formation process treatment may be applicable to a variety of metal matrix composite bodies produced by various techniques, and is particularly applicable to modifying the properties of a metal matrix composite body produced by a spontaneous infiltration technique. Particularly, at least a portion of the matrix metal of the metal matrix composite body and/or the filler material of the metal matrix composite body is modified or altered after the formation process. Preferably, the preform contains a second non-metal material, an infiltration enhancer of infiltration enhancer precursor, and an infiltration atmosphere.