Abstract:
Methods of forming a coating system on a surface of a cobalt-based superalloy component are provided. The method includes forming a nickel-based primer layer on the surface of the cobalt-based superalloy component; forming an intermediate nickel-containing layer on the nickel-based primer layer; and heat treating the cobalt-based superalloy component to form a diffusion coating on the surface of the cobalt-based superalloy component. The intermediate nickel-containing layer includes nickel, chromium, and aluminum. Coated cobalt-based superalloy components formed from such a method are also provided.
Abstract:
Methods are disclosed for producing product particles having a uniform size using a microwave plasma process. More particularly, methods of the present technology are used to manufacture product particles having a core at least partially surrounded by a shell. The core and shell of the product particles are chemically distinct. Methods of the present technology occur within a plasma chamber of a microwave plasma reactor and a microwave formed plasma is utilized to vaporize core precursor material.
Abstract:
Methods are disclosed for producing core-shell particles having a uniform size using a microwave plasma process. More particularly, methods of the present technology are used to manufacture core-shell particles having a core at least partially surrounded by a shell. The core and shell of the core-shell particles are chemically distinct. Methods of the present technology occur within a plasma chamber of a microwave plasma reactor and a microwave formed plasma is utilized to vaporize core precursor material.
Abstract:
A surface-treated steel sheet for a battery container includes a steel sheet, an iron-nickel diffusion layer formed on the steel sheet, and a nickel layer formed on the iron-nickel diffusion layer and constituting the outermost layer. When the Fe intensity and the Ni intensity are continuously measured from the surface of the surface-treated steel sheet for a battery container along the depth direction with a high frequency glow discharge optical emission spectrometric analyzer, the thickness of the iron-nickel diffusion layer being the difference (D2−D1) between the depth (D1) at which the Fe intensity exhibits a first predetermined value and the depth (D2) at which the Ni intensity exhibits a second predetermined value is 0.04 to 0.31 μm; and the total amount of the nickel contained in the iron-nickel diffusion layer and the nickel contained in the nickel layer is 10.8 to 26.7 g/m2.
Abstract:
A method includes providing an electronic assembly, where the electronic assembly has at least one electrical connection that includes at least a surface that is substantially pure tin metal and the pure tin metal has tin whiskers formed thereon and the pure tin metal has a thickness. The method includes exposing the tin metal to at least one mitigating agent selected to interact with the tin metal to oxidize the tin whiskers and mechanically removing substantially all the oxidized tin whiskers from the electronic assembly. The electronic assembly is exposed to the mitigating agent under appropriate conditions to oxidize the tin whiskers.
Abstract:
A surface of an article is modified by first disposing a nickel-enriched region at the surface of a substrate, then enriching the nickel-enriched region with aluminum to form an aluminized region, and finally removing at least a portion of the aluminized region to form a processed surface of the substrate. Upon removal of this material, the roughness of the surface is reduced from a comparatively high initial roughness value to a comparatively low processed roughness value. In some embodiments, the processed roughness is less than about 95% of the initial roughness. Moreover, the sequence of steps described herein may be iterated one or more times to achieve further reduction in substrate surface roughness.
Abstract:
An aluminization process by vapor phase deposition for high-temperature oxidation protection of a metal turbomachine part. The part including a cavity into which a metal component is introduced and assembled from an opening in the part. A halide is formed by reaction between a halogen and a metal donor containing aluminum, then the halide is transported by a carrier gas in order to come into contact with the metal part, wherein the metal component has first, before the implementation of the process, been surface-enriched with aluminum in order to serve as an aluminum donor.
Abstract:
The invention relates to a method for forming a protective coating against high-temperature oxidation on a surface of a refractory composite material based on silicon and niobium, wherein chromium present on the surface to be protected is reacted with a reactive gas which contains silicon and oxygen in order to produce a composite coating having two phases, a first phase of which is an oxide phase based on silica which has viscoplastic properties and a second phase of which is based on silicon, chromium and oxygen, and wherein the first phase and second phase are coalesced at high temperature, which allows a protective coating to be formed in which the second phase acts as a reservoir to reform, during operation, the first phase by means of reaction with an oxidising gas. The invention is preferably used in the field of aeronautical engines.
Abstract:
An aluminization process by vapor phase deposition for high-temperature oxidation protection of a metal turbomachine part. The part including a cavity into which a metal component is introduced and assembled from an opening in the part. A halide is formed by reaction between a halogen and a metal donor containing aluminum, then the halide is transported by a carrier gas in order to come into contact with the metal part, wherein the metal component has first, before the implementation of the process, been surface-enriched with aluminum in order to serve as an aluminum donor.
Abstract:
The invention relates to a method for forming a protective coating against high-temperature oxidation on a surface of a refractory composite material based on silicon and niobium, wherein chromium present on the surface to be protected is reacted with a reactive gas which contains silicon and oxygen in order to produce a composite coating having two phases, a first phase of which is an oxide phase based on silica which has viscoplastic properties and a second phase of which is based on silicon, chromium and oxygen, and wherein the first phase and second phase are coalesced at high temperature, which allows a protective coating to be formed in which the second phase acts as a reservoir to reform, during operation, the first phase by means of reaction with an oxidising gas. The invention is preferably used in the field of aeronautical engines.