Abstract:
A display device may include a substrate including a first area and a second area surrounding the first area, and pixel circuits disposed on the substrate. The pixel circuits may include a first pixel circuit disposed in the first area and a second pixel circuit disposed in the first area. The display device may include display elements disposed on the substrate. The display elements may include a first display element that may be disposed in the first area and electrically connected to the first pixel circuit and a second display element that may be disposed in the second area and electrically connected to the second pixel circuit. Various embodiments are disclosed.
Abstract:
A stamp for nano imprinting includes a base substrate, a first pattern part and a second pattern part disposed on the base substrate and having different widths, and a third pattern part and a fourth pattern part having different widths. Each of the first pattern part to the fourth pattern part includes a plurality of nano patterns, and the first pattern part and the second pattern part and the third pattern part and the fourth pattern are disposed to be arranged adjacent to each other in a sequential order in the first direction.
Abstract:
A backlight unit includes a support frame between a base portion of a bottom case and a display panel, a light guide plate between the base portion of the bottom case and the support frame, a light source between the light guide plate and a side portion of the bottom case protruding from the base portion of the bottom case, and a first optical sheet between the support frame and the display panel.
Abstract:
A display device includes a window, a display panel arranged below the window and including a display area and a peripheral area outside the display area; and a component arranged below the display panel and at least partially overlapping the peripheral area, wherein a black matrix is arranged on a bottom surface of the window in correspondence with an area in the peripheral area other than an area where the component is located.
Abstract:
A glass frit includes Bi2O3 and has a glass transition temperature (Tg) in a range of 280° C. to 320° C. A display device includes the glass frit including Bi2O3 and the glass transition temperature (Tg) in the range of 280° C. to 320° C. The display device shows excellent internal reliability and drop strength.
Abstract:
A display device may include a substrate including a first area and a second area surrounding the first area, and pixel circuits disposed on the substrate. The pixel circuits may include a first pixel circuit disposed in the first area and a second pixel circuit disposed in the first area. The display device may include display elements disposed on the substrate. The display elements may include a first display element that may be disposed in the first area and electrically connected to the first pixel circuit and a second display element that may be disposed in the second area and electrically connected to the second pixel circuit. Various embodiments are disclosed.
Abstract:
A display panel having improved product reliability includes a substrate including an opening area, a synchronization display area surrounding the opening area, and a display area arranged on a periphery of the synchronization display area, a plurality of signal lines arranged over the substrate, a first sub-pixel including a first pixel electrode arranged in the display area and a first intermediate layer which is arranged on the first pixel electrode and emits light having a first wavelength, a first synchronization sub-pixel including a first synchronization pixel electrode arranged in the synchronization display area and a first synchronization intermediate layer which is arranged on the first synchronization pixel electrode and emits light having the first wavelength as the first sub-pixel, and a first conductive layer connecting the first pixel electrode to the first synchronization pixel electrode.
Abstract:
A display device includes: a bending area between a first area and a second area; a substrate having a first opening, at least a portion of the first opening corresponding to the bending area; a display layer on a first surface of the substrate in the first area; an encapsulation member on the display layer; a first organic material layer on the substrate to cover the first opening of the substrate; and a wiring layer on the first organic material layer and comprising a plurality of wires extending in a direction crossing the bending area.
Abstract:
A display device includes: a display panel which displays an image; a light source which generates and provides the light to the display panel; a lower frame on which the light source is disposed; a reflective sheet between the light source and the lower frame; and a light-absorbing pattern on an edge portion of an upper surface of the reflective sheet.
Abstract:
A display device includes a display panel which displays an image, a backlight unit which generates light and emits the light toward the display panel, a supporting member which supports edge parts of the display panel, and an accommodation member defining an accommodation space in which the backlight unit and the supporting member are disposed. In the accommodation space, the backlight unit includes a light source which generates the light, and a side-emitting lens which covers the light source and through which the light generated by the light source is emitted. In the accommodation space, the supporting member defines a plurality of stepped parts, where the plurality of stepped parts extended toward the light source has a light reflecting characteristic.