Abstract:
A display device includes a peripheral area around a display area, a plurality of pixels in the display area, and a plurality of signal lines connected to the pixels. The signal lines include a plurality of data lines connected to the pixels, a crack detection line connected to first data lines among the data lines through a first transistor, and a control line connected to a gate of the first transistor. The crack detection line is in the peripheral area.
Abstract:
A light emitting display device includes multiple pixels arranged in multiple pixel rows, a first scan signal generator that provides a first scan signal to the pixels in the pixel rows, a second scan signal generator that provides a second scan signal to the pixels in the pixel rows, a third scan signal generator that provides a third scan signal to the pixels in the pixel rows, and a light emission signal generator that provides a light emission signal to the pixels in the pixel rows. Each of the second scan signal generator, the third scan signal generator, and the light emission signal generator provides a same signal to the pixels in two of the pixel rows.
Abstract:
An organic light emitting diode display includes a substrate, a semiconductor layer on the substrate, the semiconductor layer including a doped area and an undoped area, a first insulation layer that covers the semiconductor layer, a first conductor on the first insulation layer, a second insulation layer that covers the first conductor, a second conductor on the second insulation layer, a third insulation layer that covers the second conductor, and a third conductor on the third insulation layer, wherein, in the semiconductor layer that overlaps the first conductor, the doped area is between undoped areas.
Abstract:
An emissive display device includes: a light emitting diode; an n-type driving transistor comprising a first driving gate electrode, a first electrode receiving a driving voltage, a second electrode transferring an output current to the anode, and a second driving gate electrode; a second transistor connected to a data line; a third transistor configured to connect the first electrode and the first driving gate electrode of the driving transistor; a storage capacitor comprising a first storage electrode and a second storage electrode connected to the first driving gate electrode; a ninth transistor transferring an overlapping electrode voltage to the second driving gate electrode; an overlapping electrode voltage line crossing the data line and receiving the overlapping electrode voltage; and a shielding electrode at an intersection of the data line and the overlapping electrode voltage line and between the data line and the overlapping electrode voltage line.
Abstract:
A display device includes: a base layer comprising a first portion, a second portion extending from the first portion, and a third portion extending from the second portion; a first light emitting element disposed on the first portion; a first front signal line electrically connected to the first light emitting element and disposed on the first portion; a second front signal line electrically connected to the first front signal line, disposed on the first portion, disposed in a different layer from the first front signal line, and overlapping the first front signal line; a first connection line electrically connected to the first and second front signal lines, disposed on the second portion, and disposed in a different layer from the first and second front signal lines; and a first rear signal line electrically connected to the first connection line and disposed on the third portion.
Abstract:
An exemplary embodiment provides an organic light emitting diode display including a substrate, a bridge electrode disposed on the substrate, a buffer layer which covers the bridge electrode, a semiconductor layer disposed on the buffer layer, a first gate insulating layer which covers the semiconductor layer in a plan view, a first gate conductor disposed on the first gate insulating layer and which includes a first gate electrode, a second gate insulating layer which covers the first gate conductor, a second gate conductor disposed on the second gate insulating layer, an interlayer-insulating layer which covers the second gate conductor, and a data line disposed on the interlayer-insulating layer. The first gate electrode is directly connected to the bridge electrode, the semiconductor layer is electrically connected to the bridge electrode, and a capacitance exists between the data line and the bridge electrode.
Abstract:
A display device includes a first display area including a plurality of first pixel electrodes, and a second display area including a plurality of second pixel electrodes. A first pitch in a first direction of the plurality of first pixel electrodes is smaller than a second pitch in the first direction of the plurality of second pixel electrodes, and a length in the first direction of the first pixel electrodes is smaller than a length in the first direction of the second pixel electrode.
Abstract:
An organic light emitting display device and a testing method thereof for detecting a failure occurring in a cutting process of a protective film attached to an upper end of a panel. The organic light emitting display device includes a first substrate on which a pixel unit and a tester are formed. The pixel unit includes a plurality of pixels positioned at intersection portions of scan lines and data lines, and the tester includes a plurality of transistors coupled to the respective data lines so as to supply test signals to the data lines. The transistors are divided into at least two groups, so that transistors of one group are turned on/off by a first test control line, and transistors of another group are turned on/off by a second test control line, the first and second test control lines being disposed on opposite sides of the substrate.
Abstract:
An exemplary embodiment provides an organic light emitting diode display including a substrate, a bridge electrode disposed on the substrate, a buffer layer which covers the bridge electrode, a semiconductor layer disposed on the buffer layer, a first gate insulating layer which covers the semiconductor layer in a plan view, a first gate conductor disposed on the first gate insulating layer and which includes a first gate electrode, a second gate insulating layer which covers the first gate conductor, a second gate conductor disposed on the second gate insulating layer, an interlayer-insulating layer which covers the second gate conductor, and a data line disposed on the interlayer-insulating layer. The first gate electrode is directly connected to the bridge electrode, the semiconductor layer is electrically connected to the bridge electrode, and a capacitance exists between the data line and the bridge electrode.
Abstract:
A display device includes a substrate including a first pixel area and a second pixel area, a display panel disposed on the substrate and including a first light-emitting diode emitting a first light having a first color and overlapping the first pixel area and a second light-emitting diode emitting a second light having the first color and overlapping the second pixel area, a first pixel electrode which is disposed on the display panel and overlaps the first pixel area, and in which first slits are defined, a second pixel electrode which is disposed on the display panel, is spaced apart from the first pixel electrode, and overlaps the second pixel area, and in which second slits extending in a direction different from the first slits are defined, a common electrode layer and a liquid crystal layer disposed between the first and second pixel electrodes and the common electrode layer and including a plurality of liquid crystal molecules.