Abstract:
A mirror display apparatus includes a display unit, a thin film encapsulation layer, a plurality of mirror patterns, a protection layer and a refractive index matching layer. The display unit is disposed on a substrate. The thin film encapsulation layer extends continuously on a surface of the display unit. The mirror patterns are arranged on the thin film encapsulation layer. The protection layer is disposed on surfaces of the mirror patterns. The refractive index matching layer is interposed between the thin film encapsulation layer and the protection layer, and the refractive index matching layer fills regions between neighboring ones of the mirror patterns. A refractive index of the refractive index matching layer is less than a refractive index of the thin film encapsulation layer, and the refractive index of the refractive index matching layer is greater than a refractive index of the protection layer.
Abstract:
A thin film transistor includes a gate electrode on a substrate, a gate insulation layer which covers the gate electrode on the substrate, an oxide semiconductor pattern which is disposed on the gate insulation layer and includes a channel portion superimposed over the gate electrode, and low resistance patterns provided at edges of the channel portion, respectively, and including oxygen vacancies, a channel passivation layer on the oxide semiconductor pattern, a reaction layer which covers the oxide semiconductor pattern and the channel passivation layer, and includes a metal oxide, and a source electrode and a drain electrode which contact the oxide semiconductor pattern.
Abstract:
An organic light emitting display (OLED) device is disclosed. The OLED device may include a substrate comprising a display region and a peripheral region, the display region comprising a first transmission portion and at least one light emitting portion, the peripheral region comprising a second transmission portion and at least one electrode placement portion, a first electrode in the display region, an organic light emitting layer on the first electrode, a second electrode in the display region and the peripheral region, the second electrode opposite to the first electrode with respect to the organic light emitting layer, and a third electrode in the peripheral region. The first electrode may be patterned as an island shape to be separated per the light emitting portion. The third electrode may be patterned as an island shape to be separated per the electrode placement portion.
Abstract:
A thin film transistor substrate includes a substrate, a gate electrode disposed on the substrate, a gate insulation layer disposed on the gate electrode, an oxide semiconductor pattern disposed on the gate insulation layer, where the oxide semiconductor pattern includes a first area whose carrier concentration is in a range of about 1017 per cubic centimeter to about 1019 per cubic centimeter and a second area whose carrier concentration is less than the carrier concentration of the first area, an etch stopper disposed on the oxide semiconductor pattern, where the etch stopper covers the first area and the second area of the oxide semiconductor pattern, a signal electrode partially overlapping the etch stopper and the second area, and a passivation layer which covers the etch stopper and the signal electrode.
Abstract:
An OLED panel may include a substrate including a first region and a second region disposed along a first direction. A plurality of first pixels are disposed in the first region on the substrate, the first pixels each having a first area, the first pixels each comprising a first unit pixel, a second unit pixel disposed along a second direction from the first unit pixel, and a transmission portion disposed along the first direction from the first unit pixel and the second unit pixel. A plurality of second pixels are disposed in the second region on the substrate, the second pixels each having a second area less than the first area, the second pixels each comprising a third unit pixel. The first unit pixel, the second unit pixel, and the third unit pixel may have substantially the same shape as each other.
Abstract:
A thin film transistor includes a gate electrode on a substrate, a gate insulation layer which covers the gate electrode on the substrate, an oxide semiconductor pattern which is disposed on the gate insulation layer and includes a channel portion superimposed over the gate electrode, and low resistance patterns provided at edges of the channel portion, respectively, and including oxygen vacancies, a channel passivation layer on the oxide semiconductor pattern, a reaction layer which covers the oxide semiconductor pattern and the channel passivation layer, and includes a metal oxide, and a source electrode and a drain electrode which contact the oxide semiconductor pattern.
Abstract:
An OLED device including a first emission region, a second emission region, and a transmission region, a pixel circuit disposed on a substrate, a first pixel electrode reflecting light disposed in the first emission region, a second pixel electrode transmitting light disposed in the second emission region, a light emitting layer disposed on the first and second pixel electrodes, a common electrode transmitting light disposed on the light emitting layer and including first, second, and third common electrodes respectively overlapping the first emission region, the second emission region, and the transmission region, and a capping layer disposed on the common electrode and including first, second, and third capping layers respectively overlapping the first emission region, the second emission region, and the transmission region, in which at least two of the first capping layer, the second capping layer, and the third capping layer have different thicknesses from each other.
Abstract:
A thin film transistor substrate includes a substrate, a data line disposed on the substrate and which extends substantially in a predetermined direction, a light blocking layer disposed on the substrate and including a metal oxide including zinc manganese oxide, zinc cadmium oxide, zinc phosphorus oxide or zinc tin oxide, a gate electrode disposed on the light blocking layer, a signal electrode including a source electrode and a drain electrode spaced apart from the source electrode, where the source electrode is connected to the data line, and a semiconductor pattern disposed between the source electrode and the drain electrode.
Abstract:
An OLED panel may include a substrate including a first region and a second region disposed along a first direction. A plurality of first pixels are disposed in the first region on the substrate, the first pixels each having a first area, the first pixels each comprising a first unit pixel, a second unit pixel disposed along a second direction from the first unit pixel, and a transmission portion disposed along the first direction from the first unit pixel and the second unit pixel. A plurality of second pixels are disposed in the second region on the substrate, the second pixels each having a second area less than the first area, the second pixels each comprising a third unit pixel. The first unit pixel, the second unit pixel, and the third unit pixel may have substantially the same shape as each other.
Abstract:
An OLED panel may include a substrate including a first region and a second region disposed along a first direction. A plurality of first pixels are disposed in the first region on the substrate, the first pixels each having a first area, the first pixels each comprising a first unit pixel, a second unit pixel disposed along a second direction from the first unit pixel, and a transmission portion disposed along the first direction from the first unit pixel and the second unit pixel. A plurality of second pixels are disposed in the second region on the substrate, the second pixels each having a second area less than the first area, the second pixels each comprising a third unit pixel. The first unit pixel, the second unit pixel, and the third unit pixel may have substantially the same shape as each other.