Abstract:
A display panel includes a first substrate and a second substrate. The first substrate includes a plurality of pixel electrodes to which pixel voltages are applied and a shield electrode disposed between the pixel electrodes. A shield voltage is applied to the shield electrode. The second substrate faces the first substrate. The second substrate includes a common electrode to which a common voltage is applied.
Abstract:
A display panel includes a first substrate and a second substrate. The first substrate includes a plurality of pixel electrodes to which pixel voltages are applied and a shield electrode disposed between the pixel electrodes. A shield voltage is applied to the shield electrode. The second substrate faces the first substrate. The second substrate includes a common electrode to which a common voltage is applied.
Abstract:
A display panel includes a first substrate and a second substrate. The first substrate includes a plurality of pixel electrodes to which pixel voltages are applied and a shield electrode disposed between the pixel electrodes. A shield voltage is applied to the shield electrode. The second substrate faces the first substrate. The second substrate includes a common electrode to which a common voltage is applied.
Abstract:
A display panel includes a first substrate and a second substrate. The first substrate includes a plurality of pixel electrodes to which pixel voltages are applied and a shield electrode disposed between the pixel electrodes. A shield voltage is applied to the shield electrode. The second substrate faces the first substrate. The second substrate includes a common electrode to which a common voltage is applied.
Abstract:
A display panel includes a first substrate and a second substrate. The first substrate includes a plurality of pixel electrodes to which pixel voltages are applied and a shield electrode disposed between the pixel electrodes. A shield voltage is applied to the shield electrode. The second substrate faces the first substrate. The second substrate includes a common electrode to which a common voltage is applied.
Abstract:
A thin film transistor array panel includes: a gate conductor disposed on a substrate and including a gate line and a gate electrode, a semiconductor layer overlapping the gate electrode and including an oxide semiconductor, a data conductor including a data line intersecting the gate line, a source electrode connected to the data line, and a drain electrode facing the source electrode, a sidewall covering side surface parts of the drain electrode and the source electrode adjacent to a channel region of the semiconductor layer, and a passivation layer covering the source electrode, the drain electrode, and the sidewall.
Abstract:
A display panel includes a first substrate and a second substrate. The first substrate includes a plurality of pixel electrodes to which pixel voltages are applied and a shield electrode disposed between the pixel electrodes. A shield voltage is applied to the shield electrode. The second substrate faces the first substrate. The second substrate includes a common electrode to which a common voltage is applied.
Abstract:
A liquid crystal display that improve display quality by reducing light leakage is presented. The display includes a first substrate; a plurality of pixels disposed on the first substrate; a plurality of signal lines disposed on the first substrate and disposed at an edge of the plurality of pixels; a second substrate facing the first substrate; and a light blocking member disposed on the second substrate, overlapping the plurality of signal lines, and overlapping the edge of the plurality of pixel areas, wherein a width of the light blocking member overlapping the edge of the plurality of pixels varies depending on the position of the plurality of pixels.
Abstract:
A display panel includes a first substrate and a second substrate. The first substrate includes a plurality of pixel electrodes to which pixel voltages are applied and a shield electrode disposed between the pixel electrodes. A shield voltage is applied to the shield electrode. The second substrate faces the first substrate. The second substrate includes a common electrode to which a common voltage is applied.