Abstract:
An organic light emitting display device includes a substrate, first electrodes disposed on the substrate, a pixel defining layer disposed on the substrate and exposing at least a part of the first electrodes, a second electrode disposed on the first electrodes and the pixel defining layer, an organic light emitting layer disposed between the first electrodes and the second electrode, a thin film encapsulation layer disposed on the second electrode, barrier ribs disposed on the thin film encapsulation layer, the barrier ribs overlapping the pixel defining layer between two adjacent ones of the first electrodes, and a planarization layer disposed on the thin film encapsulation layer and the barrier ribs, and having a refractive index higher than that of the barrier ribs. Each of the barrier ribs has a closed loop shape that encloses one of the two adjacent ones of the first electrodes in a plan view.
Abstract:
An organic light-emitting display apparatus implemented by using a plurality of organic light-emitting diodes on a substrate and including a first pixel and a second pixel respectively emitting light of different colors, includes: a pixel-defining layer including a first opening and a second opening, the first opening defining an emission area of the first pixel, and the second opening defining an emission area of the second pixel; a total reflective layer over the pixel-defining layer, the total reflective layer including a first upper opening corresponding to the first pixel and a second upper opening corresponding to the second pixel; and a planarization layer covering the total reflective layer and having a refractive index greater than a refractive index of the total reflective layer, wherein an area of the first upper opening is different from an area of the second upper opening.
Abstract:
A method of manufacturing a light scattering film, the method includes providing a light transmissive base having a film shape. A plurality of holes is defined in the light transmissive base, using a perforating device. Each of the plurality of holes has a diameter ranging from about 100 nm to about 5 μm. A spacing between each of the plurality of holes is about twice to about five times as large as an average diameter of each of the plurality of holes.
Abstract:
A display device having an improved light-extraction efficiency and a reduced color sense variation according to a viewing angle includes a pixel electrode on a substrate, an insulating layer defining an emission area via an opening that covers edges of the pixel electrode and exposes a center portion of the pixel electrode, a first light extraction pattern on the pixel electrode, the first light extraction pattern having a side surface inclined at a first angle, and a second light extraction pattern surrounding the first light extraction pattern on an outer portion of the first light extraction pattern, the second light extraction pattern having a side surface inclined at a second angle that is less than the first angle.
Abstract:
A light scattering film includes a light transmissive base having a plurality of holes, wherein each of the plurality of holes has a diameter ranging from about 100 nm to about 5 μm, and wherein a gap among adjacent ones of the plurality of holes is about two times to about five times of an average of the diameters of the plurality of holes.
Abstract:
A display apparatus, a display control apparatus, and a display method are disclosed. The display apparatus includes data receiving unit receiving data; driving mode unit receiving dyschromatopsia information and determining a general driving mode or a dyschromatopsia correction driving mode; data converting unit generating corrected data by converting the data based on the dyschromatopsia information; memory storing a reference grayscale for general driving mode and at least one correction grayscales for dyschromatopsia correction driving mode; data signal output unit selecting a grayscale based on the dyschromatopsia information from among the reference grayscale or the at least one correction grayscales; and outputting a data signal corresponding to the data or the corrected data based on the selected grayscale, and a light emissive device receiving the data signal to emit light with a corresponding brightness.
Abstract:
An organic light-emitting display apparatus implemented by using a plurality of organic light-emitting diodes on a substrate and including a first pixel and a second pixel respectively emitting light of different colors, includes: a pixel-defining layer including a first opening and a second opening, the first opening defining an emission area of the first pixel, and the second opening defining an emission area of the second pixel; a total reflective layer over the pixel-defining layer, the total reflective layer including a first upper opening corresponding to the first pixel and a second upper opening corresponding to the second pixel; and a planarization layer covering the total reflective layer and having a refractive index greater than a refractive index of the total reflective layer, wherein an area of the first upper opening is different from an area of the second upper opening.
Abstract:
An organic light-emitting display apparatus that has high-resolution and high-brightness includes a substrate comprising a major surface; an insulating layer disposed over the substrate and comprising a first inclined surface which is inclined with respect to the major surface and faces away from the substrate; a reflective first pixel electrode disposed over the first inclined surface and configured to cover a portion of the first inclined surface; a first intermediate layer disposed over the first pixel electrode and comprises a light emission layer; and a reflective opposite electrode disposed over the first intermediate layer.
Abstract:
A display apparatus, a display control apparatus, and a display method are disclosed. The display apparatus includes data receiving unit receiving data; driving mode unit receiving dyschromatopsia information and determining a general driving mode or a dyschromatopsia correction driving mode; data converting unit generating corrected data by converting the data based on the dyschromatopsia information; memory storing a reference grayscale for general driving mode and at least one correction grayscales for dyschromatopsia correction driving mode; data signal output unit selecting a grayscale based on the dyschromatopsia information from among the reference grayscale or the at least one correction grayscales; and outputting a data signal corresponding to the data or the corrected data based on the selected grayscale, and a light emissive device receiving the data signal to emit light with a corresponding brightness.
Abstract:
An organic light-emitting display apparatus that has high-resolution and high-brightness includes a substrate comprising a major surface; an insulating layer disposed over the substrate and comprising a first inclined surface which is inclined with respect to the major surface and faces away from the substrate; a reflective first pixel electrode disposed over the first inclined surface and configured to cover a portion of the first inclined surface; a first intermediate layer disposed over the first pixel electrode and comprises a light emission layer; and a reflective opposite electrode disposed over the first intermediate layer.