Abstract:
Disclosed is an organic light-emitting display apparatus. The organic light-emitting display apparatus includes a substrate, a first reflective electrode that is disposed over the substrate, an organic layer that is disposed over the first reflective electrode, and includes a light emission layer, and a second reflective electrode that is disposed over the organic layer. At least one of the first and second reflective electrodes comprises a low refractive layer having a refractive index of about 1.4 or less which is smaller than that of the organic layer.
Abstract:
A method for fabricating a display device includes forming a thin film transistor on a base substrate, forming a first electrode connected to the thin film transistor, forming a pixel defining layer overlapping a portion of the first electrode, such that the pixel defining layer exposes a portion of the first electrode and partitions pixel areas, forming a block copolymer layer on the first electrode and the pixel defining layer, patterning the block copolymer layer, etching the pixel defining layer by using the patterned block copolymer layer as a mask, such that an uneven pixel defining layer with a plurality of defining layer grooves is formed, and forming a light emitting layer on the first electrode and the uneven pixel defining layer.
Abstract:
A display apparatus includes: a substrate; a first electrode; an insulating film including an opening that extends to at least the central portion of the first electrode; a light-emitting diode disposed on the first electrode and including a first pad electrically connected to the first electrode; a reflective film disposed on the insulating film so as to cover at least a portion of an inner surface of the opening; and a light path guide layer disposed on the insulating film so as to cover at least a portion of the reflective film and including a plurality of holes or a plurality of grooves on the top surface. In one embodiment, the display apparatus improves the light extraction efficiency of the light-emitting diode.
Abstract:
Disclosed is an organic light-emitting display apparatus. The organic light-emitting display apparatus includes a substrate, a first reflective electrode that is disposed over the substrate, an organic layer that is disposed over the first reflective electrode, and includes a light emission layer, and a second reflective electrode that is disposed over the organic layer. At least one of the first and second reflective electrodes comprises a low refractive layer having a refractive index of about 1.4 or less which is smaller than that of the organic layer.
Abstract:
A display apparatus includes: a substrate; a first electrode; an insulating film including an opening that extends to at least the central portion of the first electrode; a light-emitting diode disposed on the first electrode and including a first pad electrically connected to the first electrode; a reflective film disposed on the insulating film so as to cover at least a portion of an inner surface of the opening; and a light path guide layer disposed on the insulating film so as to cover at least a portion of the reflective film and including a plurality of holes or a plurality of grooves on the top surface. In one embodiment, the display apparatus improves the light extraction efficiency of the light-emitting diode.
Abstract:
An organic light-emitting display apparatus that has high-resolution and high-brightness includes a substrate comprising a major surface; an insulating layer disposed over the substrate and comprising a first inclined surface which is inclined with respect to the major surface and faces away from the substrate; a reflective first pixel electrode disposed over the first inclined surface and configured to cover a portion of the first inclined surface; a first intermediate layer disposed over the first pixel electrode and comprises a light emission layer; and a reflective opposite electrode disposed over the first intermediate layer.
Abstract:
An organic light-emitting display apparatus that has high-resolution and high-brightness includes a substrate comprising a major surface; an insulating layer disposed over the substrate and comprising a first inclined surface which is inclined with respect to the major surface and faces away from the substrate; a reflective first pixel electrode disposed over the first inclined surface and configured to cover a portion of the first inclined surface; a first intermediate layer disposed over the first pixel electrode and comprises a light emission layer; and a reflective opposite electrode disposed over the first intermediate layer.