Abstract:
A display device of embodiments of the present disclosure may include a substrate including a display area including a plurality of pixel areas, and a non-display area adjacent the display area, a circuit element layer on the substrate, and including a plurality of non-transmission areas in which a plurality of signal lines for transferring signals for driving a pixel are positioned, and a plurality of transmission areas for transmitting light and located between the signal lines in a plan view, a light emitting element layer on the circuit element layer, and including light emitting elements, and a light blocking layer between the substrate and the circuit element layer, and including a plurality of first opening portions overlapping the non-transmission area, and a plurality of second opening portions overlapping the transmission area, wherein one of the non-transmission areas and the transmission area are in each of the pixel areas.
Abstract:
A display device includes a signal receiver, a signal generator, and a signal corrector. The signal receiver receives an image signal. The signal generator generates a data signal for each of a first color pixel and a second color pixel based on the image signal. The signal corrector generates corrected data for the first color pixel based on the data signal for the second color pixel in a single driving mode. The first color pixel and the second color pixel emit light of different grayscale values of a same color. The first color pixel is driven and the second color pixel is not driven in the single driving mode.
Abstract:
A fingerprint sensing device includes: a fingerprint sensor including scan lines and initialization lines extending in a first direction and arranged in a second direction, sensing lines extending in the second direction and arranged in the first direction, and sensing pixels connected to the scan lines, the initialization lines, and the sensing lines and disposed in a matrix configuration; a scan driver configured to apply an enable-level initialization signal to a-numbered sensing pixel rows while applying a disable-level initialization signal to b-numbered sensing pixel rows, and applying an enable-level scan signal to one sensing pixel row in the b-numbered sensing pixel rows; and a sensing driver configured to receive a sensing signal from the sensing pixel row to which the scan signal is applied through the sensing lines, wherein the a and b are positive numbers that are greater than 2.
Abstract:
A fingerprint sensor according to an exemplary embodiment of the present inventive concept includes a sensor substrate; a plurality of sensor pixels sensing a capacitance change corresponding to a touch of a user, wherein each of the sensor pixels includes a sensor electrode; and a sensor protection layer disposed on the sensor substrate and the plurality of sensor pixels, wherein the sensor protection layer may include a first region having a first permittivity and a second region having a second permittivity less than the first permittivity.
Abstract:
An organic light emitting diode display includes: a first organic light emitting element configured to emit light having a first wavelength; and a second organic light emitting element configured to emit light having a second wavelength substantially shorter than the first wavelength. The first organic light emitting element includes a first electrode, and the second organic light emitting element includes a second electrode having substantially higher reflectance for the light having the second wavelength than the first electrode.
Abstract:
A display device includes a signal receiver, a signal generator, and a signal corrector. The signal receiver receives an image signal. The signal generator generates a data signal for each of a first color pixel and a second color pixel based on the image signal. The signal corrector generates corrected data for the first color pixel based on the data signal for the second color pixel in a single driving mode. The first color pixel and the second color pixel emit light of different grayscale values of a same color. The first color pixel is driven and the second color pixel is not driven in the single driving mode.
Abstract:
A display device includes a thin-film transistor layer disposed on a substrate and including thin-film transistors; and an emission material layer disposed on the thin-film transistor layer. The emission material layer includes light-emitting elements each including a first light-emitting electrode, an emissive layer and a second light-emitting electrode, light-receiving elements each including a first light-receiving electrode, a light-receiving semiconductor layer and a second light-receiving electrode, and a first bank disposed on the first light-emitting electrode and defining an emission area of each of the light-emitting elements. The light-receiving elements are disposed on the first bank.
Abstract:
A display device includes a thin-film transistor layer disposed on a substrate and including thin-film transistors; and an emission material layer disposed on the thin-film transistor layer. The emission material layer includes light-emitting elements each including a first light-emitting electrode, an emissive layer and a second light-emitting electrode, light-receiving elements each including a first light-receiving electrode, a light-receiving semiconductor layer and a second light-receiving electrode, and a first bank disposed on the first light-emitting electrode and defining an emission area of each of the light-emitting elements. The light-receiving elements are disposed on the first bank.
Abstract:
A touch sensor includes sensor pixels which provide output currents which change in response to a touch made by a user, a sensor scan driver coupled to the sensor pixels through sensor scan lines and supplies sensor scan signals to the sensor pixels, and a read-out circuit coupled to the sensor pixels through output lines, and senses a touch using the output currents. The sensor scan driver changes a scheme for supplying the sensor scan signals depending on a fingerprint sensing mode and a touch sensing mode.
Abstract:
A method for manufacturing an organic light emitting diode display includes: forming a hole injection layer on a substrate formed with a pixel circuit; forming a first assistance layer and a second assistance layer on the hole injection layer, the first assistance layer and the second assistance layer being disposed on different positions of the hole injection layer; forming a first organic emission layer on the first assistance layer; and forming a first hole transporting layer on the second assistance layer