Abstract:
A display panel includes: an upper substrate, a lower substrate disposed under the upper substrate, a lower polarizer disposed under the lower substrate, and a step smoothing member disposed under the lower substrate and not overlapping with the lower polarizer.
Abstract:
A manufacturing device for a liquid crystal display panel includes a stage including a first stage part and second stage part. The stage is configured to support a substrate laminate. A knife includes an entrance portion and a rigidity securing portion. The knife is configured to peel a support substrate of the substrate laminate. The stage is configured to rotate in a direction parallel with a surface of the stage. The rigidity securing portion of the knife is thicker than an entrance portion of the knife.
Abstract:
A display module for a multi-display device includes an array substrate, connectors disposed on the array substrate and configured to transmit signals for driving the array substrate, a printed circuit board (PCB) electrically connected to the connectors and configured to transmit signals to the connectors, and connecting members that extend through the array substrate and configured to electrically connect the connectors and the PCB.
Abstract:
A polarizing plate includes a first glass plate; a second glass plate facing the first glass plate; and a polarizing device between the first and second glass plates. An external surface of at least one of the first and second glass plates, which is not in contact with the polarizing device, has a root mean square surface roughness of about 1 nanometer or less.
Abstract:
A display device includes: a display panel having: a lower substrate; an upper substrate facing the lower substrate and having at least one through hole formed therein; a display active layer disposed between the lower substrate and the upper substrate; at least one lower pad disposed on the lower substrate; a touch sensing layer disposed on the upper substrate; and at least one connection pad disposed on the upper substrate. The connection pads are electrically connected to the lower pads through connectors disposed in the though holes of the upper substrate.
Abstract:
A liquid crystal display includes a microcavity formed on an insulation substrate that has a tapered side wall; a liquid crystal layer positioned in the microcavity; and a column portion in contact with the tapered side wall of the microcavity and between microcavities. The column portion includes a second column organic layer and a first column insulating layer formed outside the second column organic layer, and a side surface of first column insulating layer coincides with the side wall of the microcavity.
Abstract:
The method of manufacturing a device substrate includes forming a surface modifying layer on a process substrate. The surface modifying layer has a different hydrophobicity from that of the process substrate. The process substrate is disposed on a carrier substrate. The surface modifying layer is disposed between the process substrate and the carrier substrate. A device is formed on the process substrate. The process substrate is separated from the carrier substrate.
Abstract:
A display device includes a substrate, a cover layer, liquid crystal, electrodes, and a sealant layer. The cover layer is disposed on the substrate and defines at least a portion of a tunnel-shaped cavity. The liquid crystal is disposed in the tunnel-shaped cavity. The electrodes are disposed on the substrate and are configured to apply an electric field to the liquid crystal. The sealant layer is disposed on the substrate and is configured to seal the tunnel-shaped cavity. The cover layer includes a first insulating layer including a concave-convex surface.
Abstract:
A liquid crystal display includes a microcavity formed on an insulation substrate that has a tapered side wall; a liquid crystal layer positioned in the microcavity; and a column portion in contact with the tapered side wall of the microcavity and between microcavities. The column portion includes a second column organic layer and a first column insulating layer formed outside the second column organic layer, and a side surface of first column insulating layer coincides with the side wall of the microcavity.
Abstract:
The method of manufacturing a device substrate includes forming a surface modifying layer on a process substrate. The surface modifying layer has a different hydrophobicity from that of the process substrate. The process substrate is disposed on a carrier substrate. The surface modifying layer is disposed between the process substrate and the carrier substrate. A device is formed on the process substrate. The process substrate is separated from the carrier substrate.