Abstract:
Luminance correction systems and methods capable of reducing or removing luminance mura of display devices are provided. One luminance correction system includes: a display device including a plurality of pixels, the pixels including a plurality of sub-pixels, each of the pixels comprising at least two of the sub-pixels; an image capturing unit including a plurality of charge-coupled device (CCD) image capturing elements, an n×n arrangement of the image capturing elements corresponding torn of the pixels, n and m being natural numbers greater than or equal to 2; and a luminance correction device configured to generate a representative luminance value with respect to the m of the pixels based on luminance values measured by the n×n arrangement of the image capturing elements, and calculate a correction value with respect to the m of the pixels according to a difference between the representative luminance value and a target luminance value.
Abstract:
A pixel array structure of a display device, for example, an organic light emitting display device, includes a plurality of pixel units. In the pixel array structure, each of the pixel units includes four color pixels arranged in a lattice form, and a white sub-pixel positioned at the center of the pixel unit. The four pixels are disposed at a periphery of the pixel unit. In the pixel array structure, pixels are efficiently arranged in consideration of characteristics of the pixels.
Abstract:
A display device includes: a display panel including scan lines, data lines, and color pixels located at crossing regions of the scan lines and the data lines, each of the color pixels including a driving transistor, the color pixels including first color pixels, second color pixels, and third color pixels; a scan driver configured to transfer a scan signal; a data driver configured to transfer an image data signal; an initialization voltage controller configured to set different initialization voltages for each pixel during each frame according to a threshold voltage deviation for the driving transistor of each pixel and calculate the initialization voltages including first, second, and third initialization voltages corresponding to the plurality of color pixels; an initialization voltage driver configured to apply the calculated first, second, and third initialization voltages; and a signal controller configured to generate and transfer a control signal and the image data signals.
Abstract:
A display device includes a display panel that includes a pixel, a current sensor that measures a driving current provided to the display panel, and a timing controller that calculates a reference driving current and a degradation ratio of the pixel based on first image data provided to the display panel and compensates second image data based on the driving current, the reference driving current, and the degradation ratio of the pixel.
Abstract:
An organic light emitting display includes a power supply source and a power voltage compensation unit. The power supply source supplies at least a first power voltage to a first power voltage line of the display. The power voltage compensation unit to generate a first compensation power voltage based on the first power voltage and a feedback power voltage from the first power voltage line. The first power voltage compensation unit outputs the first compensation power voltage to the first power voltage line.
Abstract:
A display device is provided that can provide sufficient time for threshold voltage compensation of a driving transistor of each pixel during high-speed driving of the display device, and a method for driving the same. A data writing and threshold voltage compensation step of pixels at odd and even-numbered lines are concurrently performed during an extended time period so that the time available for threshold voltage compensation of the driving transistors can be increased.
Abstract:
Luminance correction systems and methods capable of reducing or removing luminance mura of display devices are provided. One luminance correction system includes: a display device including a plurality of pixels, the pixels including a plurality of sub-pixels, each of the pixels comprising at least two of the sub-pixels; an image capturing unit including a plurality of charge-coupled device (CCD) image capturing elements, an n×n arrangement of the image capturing elements corresponding torn of the pixels, n and m being natural numbers greater than or equal to 2; and a luminance correction device configured to generate a representative luminance value with respect to the m of the pixels based on luminance values measured by the n×n arrangement of the image capturing elements, and calculate a correction value with respect to the m of the pixels according to a difference between the representative luminance value and a target luminance value.
Abstract:
An organic light emitting display device and a driving method thereof that can stably compensate for a threshold voltage of a driving transistor. The organic light emitting display device includes pixels positioned at intersection portions (crossing regions) of scan lines and data lines, each pixel including the driving transistor having a gate electrode initialized to a voltage of an initialization power source before a data signal is supplied; power source lines coupled to the pixels in a column direction parallel with the data lines; and an initialization power source generator generating the initialization power source to the pixels via the power source lines. In the organic light emitting display device, the initialization power source generator controls the voltage of the initialization power source supplied to each pixel, corresponding to the gray scale of the data signal to be supplied to the pixel.
Abstract:
A display device is disclosed. In one aspect, the device includes a display panel that includes i) a plurality of pixels including first and second light emission control transistors, ii) a first light emission driver configured to generate a first switching control signal, iii) a second light emission driver configured to generate a second switching control signal, iv) a signal controller configured to generate and transfer a first light emission control signal and v) a light emission controller configured to generate and transfer a second light emission control signal. The light emission controller acquires information of a gray depth from a result value obtained by summing gray data, determines a light emission control algorithm according to the gray depth, and generates the second light emission control signal so that the pixels emit light during different light emission periods for a plurality of frames.
Abstract:
A display device includes a display panel that includes a pixel, a current sensor that measures a driving current provided to the display panel, and a timing controller that calculates a reference driving current and a degradation ratio of the pixel based on first image data provided to the display panel and compensates second image data based on the driving current, the reference driving current, and the degradation ratio of the pixel.