Abstract:
A touch panel includes odd-numbered touch sensor rows, even-numbered touch sensor rows, odd-numbered sensing signal transmission lines extending respectively connected to the odd-numbered touch sensor rows, and even-numbered sensing signal transmission lines respectively connected to the even-numbered touch sensor rows. First sub-scan signal transmission lines are connected only to the odd-numbered touch sensor rows, and second sub-scan signal transmission lines are connected only to the even-numbered touch sensor rows. Main scan signal transmission lines are connected to a demultiplexing circuit to selectively connect the main scan signal transmission lines to the first sub-scan signal transmission lines or the second sub-scan signal transmission lines.
Abstract:
A thin film transistor array substrate includes: a driving thin film transistor including an active layer having a bent shape, where the active layer includes: a first active pattern extending substantially in a first direction; and a second active pattern extending substantially in a second direction perpendicular to the first direction and connected to the first active pattern, and a gate electrode disposed on the active layer, where gate electrode overlaps the first active pattern and exposes the second active pattern; and a capacitor including a first electrode defined by the gate electrode of the driving thin film transistor, and a second electrode disposed on the first electrode, where the second electrode overlaps substantially an entire surface of the first electrode.
Abstract:
A flexible display device and a method of compensating for luminance of the flexible display device, the flexible display device including: a flexible display panel including a first display region and second display regions at opposite sides of the first display region and having a shape of a curved surface that is bent from a central axis of the flexible display panel at a angle; optical sensors disposed in each of the first display region and the second display regions and measuring amounts of light in the first display region and the second display regions; and a luminance compensation unit compensating luminance of the first display region and luminance of the second display regions based on the measured amounts of light.
Abstract:
An organic light emitting display device includes a plurality of pixel columns, a first data wiring, a second data wiring, and a power supply wiring. The pixel columns include pixels repeatedly arranged in a first direction, and the pixel columns are repeatedly arranged in a second direction. The first and second directions are substantially perpendicular to each other. The first data wiring extends in the first direction and is connected to the pixels in an even row. The second data wiring extends in the first direction and are connected to the pixels in an odd row. The power supply wiring extends in the first direction between the first and second data wirings.
Abstract:
A pixel includes a driving transistor to control an amount of drain-to-source current flowing from a first electrode to a second electrode based on a voltage applied to a first gate electrode. The current is used to control light emitted from an organic light emitting diode. The pixel also includes a first transistor coupled between the first gate electrode and second electrode of the driving transistor. The first gate electrode is under an active layer of the driving transistor, and the first gate electrode overlaps the active layer of the driving transistor.
Abstract:
An organic light emitting display integrated with a touch screen panel includes a first substrate, the first substrate having pixels and having signal lines coupled to the pixels, and a second substrate, the second substrate being on the first substrate to seal the first substrate, the second substrate having sensing electrodes of the touch screen panel on a surface thereof. The signal lines include first and second signal lines, the first and second signal lines being arranged in a direction that intersects the sensing electrodes, the first and second signal lines receiving different signals, respectively, and functioning as first and second driving electrodes of the touch screen panel.