Abstract:
A display device includes a driving transistor in a pixel circuit. A signal line is connected to a source or drain of the driving transistor. The source or drain of the driving transistor receives a power source voltage, an initialization voltage, and a data voltage through the signal line during different periods of operation. The periods of operation include a emission and non-emission periods.
Abstract:
A display device includes an acquiring circuit, a calculator, and a delay controller. The acquiring circuit acquires a gray scale voltage of a gray scale value of a pixel. The calculator calculates a first delay correction value based on a voltage currently retained on a data signal line to which the gray scale voltage is output and a gray scale voltage to be subsequently output to the data signal line. The delay controller determines a timing when the gray scale voltage is to be output to the data signal line based on the first delay correction value.
Abstract:
A pixel circuit includes a driving transistor connected to a light-emitting element and capacitor connected to a gate of the driving transistor. A threshold voltage of the driving transistor is compensated during a first period based on a first voltage derived from a power supply voltage. The gate of the driving transistor is set to a second voltage during a second period, where the second voltage is derived from a data voltage stored in the capacitor. The second period includes a data program period. An operation of the pixel circuit in the first period is performed independently from an operation of the pixel circuit in the data program period. Accordingly, threshold voltage compensation and data program operations are performed in separate periods based on different voltages supplied to the driving transistor.
Abstract:
An electro-optical device includes a driving transistor, a first capacitor, a second capacitor, and a switching circuit. The driving transistor is connected between a power supply and an electrode of a light-emitting element. The first capacitor is connected between a gate and source of the driving transistor. The second capacitor stores a gray scale voltage. The switching circuit selectively connects the first capacitor and the second capacitor to the gate of the driving transistor. A control circuit applies the gray scale voltage to the second capacitor while the first capacitor is connected to the gate of the driving transistor by the switching circuit, and writes a source voltage of the driving transistor at the first capacitor while the second capacitor is connected to the gate of the driving transistor by the switching circuit.
Abstract:
A pixel circuit includes a plurality of pixels. Each pixel includes a data storage capacitor to store a voltage for controlling a gray scale value based on an input data signal, a plurality of switch transistors connected in series between a data signal line and the data storage capacitor, and a plurality of connection transistors coupled to the pixels. The switch transistors have a gate electrode connected to a first gate control signal line. At least one connection transistor is connected between at least one node between the switch transistors of a first pixel and at least one node between the switch transistors of a second pixel adjacent to the first pixel. The at least one connection transistor includes a gate electrode connected to a second gate control signal line.
Abstract:
A pixel circuit is provided which includes a light-emitting element; a driving transistor configured to control an amount of current supplied from a first power line to the light-emitting element according to a pixel voltage; a capacitor having one end connected to a second power line and the other end connected to a gate of the driving transistor and configured to hold the pixel voltage; a first switch transistor configured to selectively switch the pixel voltage provided through a data signal line into the capacitor; and a second switch transistor configured to selectively connect the first power line and the second power line. The first and second power lines are separated during a period where the capacitor is charged by the pixel voltage, and are shorted during a period where the driving transistor operates according to the pixel voltage.
Abstract:
A flexible display device includes a sensing line, a sensor, and a signal controller. The sensor generates a sensing signal corresponding to a quantity of light of the sensing line. The signal controller detects an intersection of the sensing line and the sensor and generates a control signal corresponding to movement of the intersection.
Abstract:
A display device includes a sensing driver, a memory, a first compensator, and a second compensator. The sensing driver measures a first voltage value applied to a light emitter in a pixels. The memory stores a second voltage value previously measured for the pixel. The first compensator calculates a temperature of the light emitter at a time of measuring the first voltage value, and compensates for the first voltage value based on the temperature. The second compensator compensates for input data for the pixel based on a voltage variation obtained from the temperature-compensated first voltage value and the second voltage value.
Abstract:
An optoelectronic device includes a first transistor, a second transistor, and a control circuit. The first transistor is electrically connected between a power supply and a light-emitting element, has a gate to receive a gray scale voltage, and supplies the light-emitting element with a driving current corresponding to the gray scale voltage. The second transistor has a gate electrically connected to an electrode of the light-emitting element and a source or drain electrically connected to a circuit including a voltmeter. The control circuit reads a measurement value of the voltmeter when the gate of the first transistor receives the gray scale voltage, and corrects a next gray scale voltage applied to the gate of the first transistor based on the measurement value.
Abstract:
An optoelectronic device includes a first power supply line and a second power supply line extending between two adjacent columns of pixel circuits. A first voltage and a second voltage are alternately applied to each of the first and second power supply lines. The first voltage may be a power voltage, and the second voltage may be an initialization voltage. The first and second power supply lines extend in a direction parallel to data lines and are perpendicular to gate lines connected to the pixel circuits. The first power supply line is connected to even-numbered rows of the pixel circuits, and the second power supply line is connected to odd-numbered rows of the pixel circuits. Each of the pixel circuits includes a capacitive circuit connected between one of the gate lines and a driving transistor. The capacitive circuit stores a voltage to boost a gate voltage of the driving transistor.