Abstract:
A method for driving an electronic device may include receiving light passing through a display panel, generating an image signal based on the light, compensating the image signal with a compensation algorithm to generate a compensated image signal, wherein the compensation algorithm is trained with training data including a first comparison image and a second comparison image, and displaying, on the display panel, a compensated image based on the compensated image signal, wherein the first comparison image is a target restoration image and the second comparison image is a composite image.
Abstract:
A display device that includes: a display panel; a sensor that is disposed on a side of the display panel; and a discoloration layer that is disposed on an opposite side of the display panel, wherein a transmittance of the discoloration layer may vary by 5 times to 20 times, which depends on whether or not ultraviolet light is present, with respect to light having a wavelength of about 600 nm to about 630 nm.
Abstract:
A polarizer includes a first laminated structure having a first layer with a first refractive index and a second layer with a second refractive index, wherein the first and second refractive indices are different from each other. A buffer layer is disposed on the first laminated structure. A second laminated structure in the polarizer has a third layer with a third refractive index and a fourth layer with a fourth refractive index, wherein the third and fourth refractive indices are different from each other.
Abstract:
A liquid crystal display includes a liquid crystal panel, a polarizing plate on a surface of the liquid crystal panel and having a polarizing axis; and a compensation film between the liquid crystal panel and the polarizing plate, and having an optical axis at which light passes through the compensation film. When a surface of the compensation film is referred to as a x-y plane, a plane passing through an x-axis and vertical to the optical axis of the compensation film is referred to as an x-y′ plane. A first retardation value (Ro′) of the compensation film is (nx−ny′)d, and a second retardation value (Rth′) is [(nx+ny′)/2−nz′]d, and the first and second retardation values (Ro′) and (Rth′) satisfy the following Formula of 0.92≦Rth′/Ro′≦4.75, where ‘n’ denotes a refractive index and ‘d’ denotes a thickness of the compensation film in a z-axis direction.
Abstract:
An electronic apparatus includes an electronic module which outputs or receives a signal, an electronic panel that is divided into a first area overlapping the electronic module, a second area which surrounds at least a portion of the first area, and a third area adjacent to the second area in a plan view, a window on the electronic panel, an anti-reflection member between the window and the electronic panel, and an adhesive layer between the window and the anti-reflection member. A hole which overlaps at least a portion of the first area is defined in the anti-reflection member, and the adhesive layer fills the hole.
Abstract:
A display device includes a display module; and a layer disposed on the display module and having a first area and a second area adjacent to the first area, the layer in the first area including a plurality of discontinuities spaced apart from each other. A sum of widths of the plurality of discontinuities is less than about 0.23 times of a width of the first area, each of the widths of the plurality of discontinuities is equal to or less than about 400 μm, and the widths of the plurality of discontinuities and the width of the first area are parallel to a first direction.
Abstract:
A liquid crystal display includes a first substrate and a second substrate facing each other. A color filter is positioned on the first substrate. A liquid crystal layer is interposed between the first substrate and the second substrate. A first polarizer is positioned on an outer surface of the first substrate. A first compensation film is positioned on an outer surface of the first polarizer. A second compensation film is positioned on an outer surface of the second substrate. A third compensation film is positioned on an outer surface of the second compensation film. A second polarizer is positioned on an outer surface of the third compensation film. The second compensation film includes a negative C-plate, and the third compensation film includes a biaxial film.
Abstract:
A liquid crystal display apparatus includes a first substrate, a second substrate disposed opposite to the first substrate, a liquid crystal layer and a phase difference compensation film disposed on the first substrate, where the phase difference compensation film includes a fluorine resin.
Abstract:
A method for driving an electronic device may include receiving light passing through a display panel, generating an image signal based on the light, compensating the image signal with a compensation algorithm to generate a compensated image signal, wherein the compensation algorithm is trained with training data including a first comparison image and a second comparison image, and displaying, on the display panel, a compensated image based on the compensated image signal, wherein the first comparison image is a target restoration image and the second comparison image is a composite image.
Abstract:
A display device includes a display module; and a layer disposed on the display module and having a first area and a second area adjacent to the first area, the layer in the first area including a plurality of discontinuities spaced apart from each other. A sum of widths of the plurality of discontinuities is less than about 0.23 times of a width of the first area, each of the widths of the plurality of discontinuities is equal to or less than about 400 μm, and the widths of the plurality of discontinuities and the width of the first area are parallel to a first direction.