Abstract:
An array substrate includes a lower substrate, a switching element and a pixel electrode. In the lower substrate, unit pixel areas are each divided into a plurality of domains. The switching element is disposed on the lower substrate and transmits a pixel signal. The pixel electrode is disposed on the unit pixel area and is electrically connected to the switching element. The pixel electrode includes a plurality of branch portions disposed thereon. A portion of the branch portions is longitudinally extended in a zigzag shape along different directions in correspondence with the domains.
Abstract:
A liquid crystal display device includes a liquid crystal display panel, a light source configured to provide the liquid crystal display panel with a light, a vertical blank detector circuit configured to calculate a counting value of a vertical blank period of a frame by counting a synchronization signal, a luminance correction value calculator circuit configured to calculate a luminance correction value by comparing the counting value of the vertical blank period with a plurality of reference counting values, and a light source driver configured to generate a light source driving signal and provide the light source driving signal to the light source. The light source driving signal has a normal level corresponding to a normal luminance value in an active period of the frame and has a correction level corresponding to the luminance correction value in the vertical blank period of the frame.
Abstract:
A display apparatus includes a display panel. The display panel includes a high sub-pixel, a low sub-pixel and a toggle voltage input circuit. The high sub-pixel may include a first switching element connected to a gate line extending in a first direction and a data line extending in a second direction crossing with the first direction. The low sub-pixel may include a second switching element connected to the gate line and the data line and disposed opposite to the high sub-pixel with reference to the gate line, and a third switching element connected to the second switching element and a storage line. The toggle voltage input circuit may be connected to the storage line to transmit a toggle voltage to the low sub-pixel. The toggle voltage may be capable of being varied periodically.
Abstract:
A liquid crystal display device includes an array substrate, an opposite substrate and a liquid crystal display layer. The array substrate includes a pixel electrode and a lower reactive mesogen layer. The pixel electrode includes a plurality of slit portions disposed on a plurality of domains in different directions. The lower reactive mesogen layer is disposed on the pixel electrode to induce an inclined direction of liquid crystal molecules. The opposite substrate includes an upper substrate. An upper reactive mesogen layer is disposed on a common electrode of the opposite substrate. The liquid crystal layer includes liquid crystal molecules arranged to have a pretilt angle between a surface of the lower reactive mesogen layer and a surface of the upper reactive mesogen layer.
Abstract:
A method of adjusting luminance of a backlight unit included in a liquid crystal display device that performs inversion driving is provided. The method derives a positive polarity histogram and a negative polarity histogram of an image frame based on image frame data, corresponding to the image frame, and a data polarity pattern for implementing the image frame, derives a luminance compensation value according to data polarity dominance of the image frame by analyzing the positive polarity histogram and the negative polarity histogram, and applies the luminance compensation value to the luminance of the backlight unit during a portion of a time period of the image frame.
Abstract:
A liquid crystal display device includes a liquid crystal display panel, a light source configured to provide the liquid crystal display panel with a light, a vertical blank detector circuit configured to calculate a counting value of a vertical blank period of a frame by counting a synchronization signal, a luminance correction value calculator circuit configured to calculate a luminance correction value by comparing the counting value of the vertical blank period with a plurality of reference counting values, and a light source driver configured to generate a light source driving signal and provide the light source driving signal to the light source. The light source driving signal has a normal level corresponding to a normal luminance value in an active period of the frame and has a correction level corresponding to the luminance correction value in the vertical blank period of the frame.
Abstract:
A liquid crystal display device includes a liquid crystal display panel, a light source configured to provide the liquid crystal display panel with a light, a vertical blank detector circuit configured to calculate a counting value of a vertical blank period of a frame by counting a synchronization signal, a luminance correction value calculator circuit configured to calculate a luminance correction value by comparing the counting value of the vertical blank period with a plurality of reference counting values, and a light source driver configured to generate a light source driving signal and provide the light source driving signal to the light source. The light source driving signal has a normal level corresponding to a normal luminance value in an active period of the frame and has a correction level corresponding to the luminance correction value in the vertical blank period of the frame.