Abstract:
A transistor including a polysilicon layer on a base substrate and including a channel region, a first ion doping region, a second ion doping region, the channel region being between the first and second ion doping regions, an average size of the grains in the channel region being greater than that of the grains in the first and second ion doping regions, a first gate electrode insulated from and overlapping the channel region, a second gate electrode insulated from the first gate electrode and overlapping the channel region, an inter-insulating layer on the second gate electrode, a source electrode on the inter-insulating layer and connected to the first ion doping region, and a drain electrode on the inter-insulating layer and connected to the second ion doping region.
Abstract:
A transistor including a polysilicon layer on a base substrate and including a channel region, a first ion doping region, a second ion doping region, the channel region being between the first and second ion doping regions, an average size of the grains in the channel region being greater than that of the grains in the first and second ion doping regions, a first gate electrode insulated from and overlapping the channel region, a second gate electrode insulated from the first gate electrode and overlapping the channel region, an inter-insulating layer on the second gate electrode, a source electrode on the inter-insulating layer and connected to the first ion doping region, and a drain electrode on the inter-insulating layer and connected to the second ion doping region.
Abstract:
A display panel includes a base substrate including a pixel area and a peripheral area, a semiconductor layer disposed on a portion of the base substrate, a display element disposed in the pixel area, and a thin film transistor which controls the display element and includes an input electrode, an output electrode and a control electrode, in which the semiconductor layer includes a first portion disposed on the input electrode of the first thin film transistor, a second portion disposed on the output electrode of the first thin film transistor, and a third portion which connects the first portion and the second portion, overlaps the control electrode of the first thin film transistor, and defines a channel of the first thin film transistor.
Abstract:
A thin film transistor includes a semiconductor layer disposed on a base substrate and including an oxide semiconductor material, a source electrode and a drain electrode, which respectively extend from opposing ends of the semiconductor layer, a plurality of low carrier concentration areas respectively disposed between the source electrode and the semiconductor layer and between the drain electrode and the semiconductor layer, a gate insulating layer disposed on the semiconductor layer, and a gate electrode disposed on the gate insulating layer.
Abstract:
Thin film transistor substrate includes: a substrate; a crystalline silicon layer on the substrate; and a capping layer covering the crystalline silicon layer and including a first portion having a first thickness and a second portion having a second thickness that is greater than the first thickness.
Abstract:
Thin film transistor substrate includes: a substrate; a crystalline silicon layer on the substrate; and a capping layer covering the crystalline silicon layer and including a first portion having a first thickness and a second portion having a second thickness that is greater than the first thickness.
Abstract:
A thin film transistor includes a semiconductor layer disposed on a base substrate and including an oxide semiconductor material, a source electrode and a drain electrode, which respectively extend from opposing ends of the semiconductor layer, a plurality of low carrier concentration areas respectively disposed between the source electrode and the semiconductor layer and between the drain electrode and the semiconductor layer, a gate insulating layer disposed on the semiconductor layer, and a gate electrode disposed on the gate insulating layer.