Abstract:
Provided is a liquid crystal display, including a first substrate including a plurality of pixel regions including a transmissive light area and a non-transmissive light area, a second substrate facing the first substrate and a liquid crystal layer disposed between the first substrate and the second substrate, wherein the pixel regions includes color filters disposed on a base substrate, a pixel electrode disposed on each of the color filters at the transmissive light area and a black column spacer at a region except a region corresponding to the transmissive light area, wherein the each of the color filters has substantially rectangular shape with a long side and a short side, and wherein the long side has a recess portion in which a part of a long side corresponding to the non-transmissive light area is removed.
Abstract:
A liquid crystal display includes a lower substrate including a pixel area and a light blocking region, a thin film transistor layer on the lower substrate and including a gate line and a data line, a color filter on the thin film transistor layer and corresponding to the pixel area, a light blocking member on the color filter and corresponding to the light blocking region, an upper substrate facing the lower substrate, and a liquid crystal layer between the lower and upper substrates. The light blocking member includes a horizontal light blocking member extending along the gate line and a vertical light blocking member extending along the data line. The color filter includes a protrusion portion overlapping a portion of the horizontal light blocking member which is in the pixel area. A sub-column spacer includes the portion of the horizontal light blocking member overlapping the protrusion portion.
Abstract:
A display device array substrate comprising first and second substrates that comprise a display area and a dummy area around the periphery of the display area, and that face each other; a color filter disposed on the first substrate; and a liquid crystal layer disposed on the color filter. The color filter comprises at least one or more first color filters and adjacent second color filters, and the first color filters and the second color filters overlap each other in the display area and do not overlap each other in the dummy area.
Abstract:
A manufacturing method of a liquid crystal display includes forming display pixels which display an image and dummy pixels which do not display the image on a lower substrate including a display area and a non-display area positioned in at least one side outside the display area, coating a light blocking member material layer on a first dead space area adjacent to the display area and having a dummy area where the dummy pixels are positioned, a second dead space area adjacent to the first dead space area, and a third dead space area adjacent to the second dead space area in the non-display area, and forming first to third light blocking members through exposure by using an optical mask in which at least two or more halftone regions and a full-tone region are mixed.
Abstract:
A liquid crystal display includes: a substrate including a display region and a non-display region, a light leakage preventing layer disposed on the substrate along the non-display region, a step providing layer disposed on the light leakage preventing layer, and a hydrophobic layer disposed on the step providing layer.
Abstract:
A display device includes a first substrate and a second substrate facing each other, a first thin film transistor (“TFT”) disposed on the first substrate, a second TFT disposed on the first substrate, a first color filter disposed on the first TFT and a periphery thereof, a second color filter disposed on the second TFT and a periphery thereof and representing a different color from the first color filter, and a light blocking member disposed on the first and second color filters where the light blocking member includes a first spacer disposed on the first TFT and the first color filter, a second spacer disposed on the second TFT and the second color filter, a main light blocking portion disposed in peripheries of the first and second spacers, and a furrow disposed between the second spacer and the main light blocking portion.
Abstract:
A photosensitive resin composition includes: a) an acryl-based copolymer obtained by copolymerizing i) a hydroxyl group-containing unsaturated compound; ii) an unsaturated carboxylic acid, an unsaturated carboxylic anhydride, or a mixture thereof; iii) an epoxy group-containing unsaturated compound; and iv) an olefin-based unsaturated compound, b) a 1,2-quinonediazide 5-sulfonic ester compound having a phenol compound including a compound represented by the above Chemical Formula A as ballast, c) a silane coupling agent, and d) a solvent.
Abstract:
An array substrate for a display device includes a first substrate which includes a display region and a non-display region enclosing a periphery of the display region, a second substrate facing the first substrate which includes the display region and the non-display region enclosing a periphery of the display region, a color filter disposed on the first substrate, a liquid crystal layer disposed on the color filter and a black matrix disposed on the first substrate in the non-display region and at least a part of the display region, where the black matrix has a thickness ranging from about 2.5 micrometers to about 6.0 micrometers.
Abstract:
A liquid crystal display includes a display substrate, an opposite substrate, a liquid crystal layer, a main spacer, and a sub-spacer. The display substrate includes a plurality of pixel areas and a light blocking area, and at least one thin film transistor is disposed in the light blocking area. The opposite substrate is coupled to the display substrate. The liquid crystal layer is disposed between the display substrate and the opposite substrate. The main spacer is disposed on the display substrate, includes a light blocking material, and makes contact with the opposite substrate to maintain a cell gap between the display substrate and the opposite substrate. The sub-spacer is disposed on the display substrate, includes the light blocking material, and is spaced apart from the opposite substrate. The sub-spacer has a size corresponding to the light blocking area, and the main spacer is protruded from the sub-spacer.
Abstract:
A liquid crystal display includes: gate and data lines; a thin film transistor connected to the gate and data lines; a pixel electrode connected to the thin film transistor, including first and second sub-pixel electrodes; a shielding electrode member on the data line, including first and second shielding electrodes respectively at opposing sides of the pixel electrode, each shielding electrode including: an expanded part between the first and second sub-pixel electrodes, and a vertical part elongated from the expanded part in a first direction parallel to the data line; and a light blocking member elongated in a second direction crossing the first direction, overlapping the thin film transistor A second direction width of the expanded part is larger than that of the vertical part, and opposing edges of the expanded part overlap the elongated light blocking member overlapping the thin film transistor.