Abstract:
An organic light-emitting display device includes: a plurality of pattern electrodes; a hole-transporting layer disposed on the plurality of pattern electrodes; a plurality of emission layers disposed on the hole-transporting layer and overlapping the plurality of pattern electrodes, respectively; a common electrode disposed on the emission layers; and a first auxiliary layer disposed between a first one of the pattern electrodes and a first one of the emission layers, wherein the first emission layer forms an interface with the hole-transporting layer or the first auxiliary layer, the interface having a hole barrier equal to or less than about 0.1 eV, wherein the hole-transporting layer and the first auxiliary layer have a hole mobility equal to or less than about 1.0×10−3 cm2/V·s.
Abstract:
A method of driving a display panel in an organic light-emitting display device is provided. The method determines whether a single color image is displayed on the display panel or a multiple color image is displayed on the display panel, applies an initialization voltage, for initializing an anode of an organic light-emitting element included in a non-light-emitting pixel, to the anode of the organic light-emitting element included in the non-light-emitting pixel when the multiple color image is displayed on the display panel, and applies a lateral leakage prevention voltage that is higher than the initialization voltage to an anode of an organic light-emitting element included in an adjacent non-light-emitting pixel that is located within a reference distance from a light-emitting pixel when the single color image is displayed on the display panel.
Abstract:
A backlight unit includes at least one light source configured to emit light and a light guide plate including a light incident surface and a light emitting emitting surface. The light from the light source is incident on the light incident surface and the incident light is emitted through the light emitting surface. A wavelength conversion unit is disposed between the light source and the light incident surface of the light guide plate. A lower cover is configured to cover at least part of a lower portion of a light incident surface of the wavelength conversion unit. An upper cover is configured to cover at least part of an upper portion of the light incident surface of the wavelength conversion unit.
Abstract:
A backlight unit including an optical pattern sheet and a liquid crystal display are provided. The backlight unit includes a light guide plate, a light source portion arranged adjacent to a side surface of the light guide plate to emit light, a mold frame having an extension portion that covers an upper portion of the light source portion and a part of an upper portion of the light guide plate, and an optical pattern sheet arranged on a lower portion of the extension portion to shade or diffuse incident light, wherein the optical pattern sheet includes a base film and an optical pattern portion positioned on the base film.
Abstract:
A quantum rod sheet includes: a first support layer including a plurality of grooves which extends substantially in a predetermined direction; a plurality of quantum rods arranged substantially in the predetermined direction along the grooves of the first support layer; and a second support layer which covers the first support layer and the quantum rods.
Abstract:
A display device includes a red pixel, a green pixel, and a blue pixel comprising a plurality of transistors and an organic light emitting element. The organic light emitting element has a value of a temperature sensitive factor (TSF) in a range of about 0.25×10−1 Cd·m2/V to about 0.51×10−1 Cd·m2/V as shown in a following equation:
T S F
=
d (
Δ
L (
c , T
)
Δ
J (
c , T
)
)
dV ( c )
,
where, ΔJ is the amount of change in current density, ΔL is the amount of change in luminance, V is the voltage, a variable c is the color, and T is a temperature.
Abstract:
A backlight unit includes a light source, a light guiding plate disposed on a side of the light source to guide light, a quantum dot bar disposed between the light source and the light guiding plate and spaced apart from the light source and the light guiding plate, the quantum dot bar for performing wavelength conversion of light, and a quantum dot bar receiving unit disposed on lower surfaces of the quantum dot bar and the light guiding plate, wherein the quantum dot bar is seated on the quantum dot bar receiving unit, and the light guiding plate is mounted on the quantum dot bar receiving unit, and wherein the quantum dot bar receiving unit and the light guiding plate are coupled to each other.
Abstract:
A light guiding plate includes: a light guiding substrate; and a plurality of optical scattering patterns positioned on a first surface of the light guiding substrate. The plurality of optical scattering patterns respectively includes a binder, a scattering particle and a semiconductor nanocrystal. A color of light emitted from the plurality of optical scattering patterns is substantially the same.
Abstract:
A light emitting diode and a light emitting diode display, the light emitting diode including a first electrode; a second electrode overlapping the first electrode; an emission layer between the first electrode and the second electrode; and an electron injection layer between the second electrode and the emission layer, wherein the electron injection layer includes a lanthanide element, an alkali meta first element, and a halogen second element, and wherein the first element and the second element are included in the electron injection layer in an amount of 1 vol % to 20 vol %, based on a total volume of a material including the lanthanide element, the first element, and the second element.
Abstract:
A backlight assembly includes a light source portion including a plurality of light sources. The light sources are configured to emit light. A wavelength conversion member is disposed on the light source portion. The wavelength conversion member is configured to convert a wavelength of light emitted from the light source portion. The wavelength conversion member includes a first substrate disposed on the light source portion, a second substrate disposed on the first substrate, and a plurality of wavelength conversion layers interposed between the first substrate and the second substrate. Each of the plurality of wavelength conversion layers correspond to a light source of the plurality of light sources.