Abstract:
The present disclosure relates to an artificial intelligence (AI) system which simulates functions such as cognition, judgment, and the like of the human brain by utilizing machine learning algorithms such as deep learning and the like, and to an application thereof. According to various embodiments, an electronic device may comprise: a first impedance matching circuit configured to perform a first impedance matching on a power signal wirelessly received from a wireless power transmission device; a second impedance matching circuit configured to perform a second impedance matching on the first impedance-matched power signal using any one impedance value among a plurality of impedance values; a control circuit configured to perform control to change an impedance value of the second impedance matching circuit to an impedance value learned using an impedance matching network model, corresponding to a power and a frequency of the second impedance-matched power signal; and a power conversion circuit configured to convert a second impedance-matched power signal in an AC form into a power in a DC form for charging a battery according to the changed impedance value.
Abstract:
A memory system includes a storage device including a nonvolatile memory device and a storage controller configured to control the nonvolatile memory device, and a host that accesses the storage device. The storage device transfers map data, in which a physical address of the nonvolatile memory device and a logical address provided from the host are mapped, to the host depending on a request of the host. The host stores and manages the transferred map data as map cache data. The map cache data are managed depending on a priority that is determined based on a corresponding area of the nonvolatile memory device.
Abstract:
A nonvolatile storage device in accordance with the inventive concepts includes a nonvolatile memory device comprising a first memory area, a second memory area, and a memory controller. The memory controller includes a first register configured to store reliable mode information, and a second register configured to store operating system (OS) image information. The memory controller is configured to receive a command from a host based on the reliable mode information; determine whether the command is a write request for an OS image and whether OS image information accompanying the command matches the OS image information stored in the second register; write the OS image to the first memory area if the OS image information accompanying the command matches the OS image information stored in the second register, and block data migration of the OS image from the first memory area to the second memory area.
Abstract:
An electronic device according to an embodiment may include a display, a touch sensor, an illuminance sensor configured to generate illuminance information, a memory configured to store brightness data relating the ambient illuminance to brightness of the display, and a processor. The processor may be configured to identify the illuminance information from the illuminance sensor, configure the brightness of the display as first brightness, based on the illuminance information and the brightness data, change the brightness of the display to second brightness, based on a user input, acquire event information for an operation in which the brightness of the display is changed by the user input, reconfigure the brightness data stored in the memory, based on the event information, and determine the brightness of the display according to a brightness value mapped in the reconfigured brightness data to the illuminance information identified by the illuminance sensor.
Abstract:
An electronic device according to various embodiments of the present invention comprises: a receiving circuit for outputting an AC power received wirelessly; and a rectifier circuit for rectifying the AC power being output from the power receiving circuit. The rectifier circuit comprises a forward rectifier circuit and a reverse rectifier circuit. A first terminal of the forward rectifier circuit is connected to the receiving circuit and the reverse rectifier circuit, a second terminal of the forward rectifier circuit is connected to an output terminal, and the forward rectifier circuit comprises first transistors for rectifying the AC power during a first period. A first terminal of the reverse rectifier circuit is connected to the receiving circuit and the forward rectifier circuit, a second terminal of the reverse rectifier circuit is connected to a ground, and the reverse rectifier circuit can comprise second transistors for preventing the AC power from being transmitted to the forward rectifier circuit during a second period.
Abstract:
Disclosed are a voltage-controlled oscillator and an electronic device comprising same. A voltage-controlled oscillator according to one embodiment includes an LC tank and one or more GM cells connected to the LC tank. The LC tank includes a variable capacitor and a switched inductor connected in parallel to the variable capacitor. The GM cells include one or more decoupling capacitors inserted between the LC tank and one or more drain nodes of the GM cells.
Abstract:
A nonvolatile storage device in accordance with the inventive concepts includes a nonvolatile memory device comprising a first memory area, a second memory area, and a memory controller. The memory controller includes a first register configured to store reliable mode information, and a second register configured to store operating system (OS) image information. The memory controller is configured to receive a command from a host based on the reliable mode information; determine whether the command is a write request for an OS image and whether OS image information accompanying the command matches the OS image information stored in the second register; write the OS image to the first memory area if the OS image information accompanying the command matches the OS image information stored in the second register, and block data migration of the OS image from the first memory area to the second memory area.
Abstract:
A nonvolatile storage device in accordance with the inventive concepts includes a nonvolatile memory device comprising a first memory area, a second memory area, and a memory controller. The memory controller includes a first register configured to store reliable mode information, and a second register configured to store operating system (OS) image information. The memory controller is configured to receive a command from a host based on the reliable mode information; determine whether the command is a write request for an OS image and whether OS image information accompanying the command matches the OS image information stored in the second register; write the OS image to the first memory area if the OS image information accompanying the command matches the OS image information stored in the second register, and block data migration of the OS image from the first memory area to the second memory area.