Abstract:
A method of detecting an electrocardiogram signal is disclosed. The method includes measuring an electrocardiogram signal, determining a wave period based on an inclination of the measured electrocardiogram signal, and detecting an apex of the electrocardiogram signal with at least one of a maximum size and inclination in the wave period.
Abstract:
Disclosed herein is an ultrasound apparatus, a control method thereof, and a telemedicine system, the ultrasound apparatus including an ultrasound transducer configured to receive a reflected ultrasound signal and a signal processor configured to generate an ultrasound image using a first frequency band signal of the received ultrasound signal, and to generate additional information using a second frequency band signal of the received ultrasound signal.
Abstract:
A method for obtaining an elastic feature of an object includes inducing a first shear wave in the object by transmitting a first push ultrasound signal which is generated by a probe of an ultrasound apparatus and a first grating lobe signal which relates to the first push ultrasound signal toward the object, transmitting a tracking ultrasound signal to an area of the object where the first shear wave has propagated, receiving, from the object, a reflection signal which relates to the tracking ultrasound signal, measuring a first shear wave parameter which indicates a shear wave characteristic of the first shear wave based on the reflection signal, and obtaining an elastic feature of the object by using the first shear wave parameter.
Abstract:
An ultrasound system and a clutter filtering method thereof are provided. The clutter filtering method includes: transmitting an ultrasound signal to an object; receiving a reflection signal reflected from the object; performing a singular value decomposition (SVD) on a plurality of doppler signals constituting the reflection signal; dividing a representation of the object into a plurality of regions according to a result of performing the SVD; determining cutoff frequencies of the plurality of regions according to different methods; and performing clutter filtering on the plurality of regions by using the determined cutoff frequencies.
Abstract:
Disclosed is an electronic apparatus for measuring a biometric signal, the electronic apparatus including: a measurer comprising measuring circuitry configured to measure a biometric signal of a person to be examined, and to generate a measured signal having a waveform corresponding to a characteristic of the biometric signal; a signal processor configured to process the generated measured signal; and a controller configured to control the signal processor to generate a compressed signal by compressing the measured signal and at least one piece of characteristic information included in a waveform of the measured signal, when the measured signal is compressed. Thus, a measured biometric signal is efficiently compressed while reducing a loss of main characteristic information.
Abstract:
Disclosed is a method for generating an ultrasonic image, the method including: transmitting an ultrasonic signal to a predetermined portion of an object and receiving at least three response signals which are reflected from the predetermined portion; selecting at least two response signals from among the at least three received response signals; and acquiring vector information which indicates a speed and a movement direction of the predetermined portion based on a receiving angle and a Doppler frequency of each of the selected at least two response signals.
Abstract:
A blood vessel analysis information providing method includes emitting an ultrasonic signal on a body portion where a blood vessel exists and sensing a reflected ultrasonic signal, generating a color mode image by using the reflected ultrasonic signals, and determining diameters of the blood vessels based on pixel values of the generated color mode image.
Abstract:
A method of generating an ultrasound image includes transmitting an ultrasound signal to a predetermined point included in an object and receiving at least three response signals reflected from the predetermined point; extracting a plurality of response signal pairs by combining the received at least three response signals two-by-two; obtaining a plurality of pieces of prediction vector information, each of the pieces of prediction vector information indicating a prediction velocity magnitude and a prediction velocity direction of the predetermined point, based on reception angles and Doppler frequencies of the response signals included in the plurality of response signal pairs; and determining vector information indicating a velocity magnitude and a velocity direction of the predetermined point, based on the plurality of pieces of prediction vector information.