Abstract:
A method for parallel processing of a video frame in accordance with principles of inventive concepts may include dividing the video frame into N tiles in a direction perpendicular to a raster scan direction; and sequentially encoding or decoding coding tree blocks included in each of the N tiles from a first row to an mth row according to the raster scan direction, wherein encoding or decoding of an Kth tile (K being a natural number more than 2 and less than N) starts at a point of time when encoding or decoding of coding tree blocks included in a first row of a (K−1)th tile is completed.
Abstract:
A multi core graphic processing device includes a first graphic core that processes a first segment of a graphic frame divided into a plurality of segments and generates a first local decision that defines a scene property of the first segment, a second graphic core that processes a second segment of the graphic frame different from the first segment and generates a second local decision that defines a scene property of the second segment, and a global decision unit that receives the first local decision and the second local decision from the first graphic core and the second graphic core, and selects one of the received first local decision and second local decision as a global decision.
Abstract:
A video/image compression method based on an region of interest (ROI) can be performed in a variable block video encoder such as a HEVC. A ROI coding method using variable block size coding information partitions a maximum coding unit (LCU) block obtained from an image into coding unit (CU) blocks. To obtain a quantization parameter of each coding unit (CU) block, the value of its quantization parameter is assigned based on its first hierarchical depth information and its second hierarchical depth information by using the first hierarchical depth information related to the size of the coding unit (CU) block and using the second hierarchical depth information related to the size of a prediction unit (PU) block correspondingly represented in consequence of the partition of the coding unit (CU) block. The resulting values of a quantization parameter assigned to different coding unit (CU) blocks may be different.
Abstract:
A transform processor may process original data that includes video information by using at least one of first and second processing methods, and generates at least one of first and second transformed data. Index determination logic may determine an index satisfying a determination condition based on at least one of the first and second transformed data. Energy compaction determination logic may determine energy compaction of at least one of the first and second transformed data based on the determined index. Output selection logic may selectively output one of the first and second transformed data based on the determined energy compaction. An entropy encoder may encode data output from the output selection logic.
Abstract:
To stabilize video (an image sequence), reconstructed block data and decoding information of a video frame are received by unit of macroblock from a decoding circuit. Global affine parameters are determined and provided based on the reconstructed block data and the decoding information, and the global affine parameters represent an affine transform of a frame. Stabilized block data are provided based on the global affine parameters by compensating the reconstructed block data for an affine motion corresponding to the affine transform.
Abstract:
A video encoding device includes a pixel offset pre-calculation part configured to generate a loop-filtered pixel from a coding information and at least one of a source pixel, a predicted pixel and a restructured pixel, and configured to generate an offset from the loop-filtered pixel by performing a sample adaptive offset operation. The video encoding device also includes an entropy coding part configured to generate a bit stream from the offset.
Abstract:
An image processing device includes a bad pixel masking unit and a noise reduction unit. The bad pixel masking unit detects bad pixels in a plurality of blocks and masks the determined bad pixels. The noise reduction unit removes noise from the pixels in the plurality of blocks excluding the masked pixels using a pattern matching method and corrects bad pixels by obtained an average pixel value.
Abstract:
An intra refresh method is provided. The intra refresh method includes dividing a first frame into regions, counting a number of intra macroblocks included in each of the regions, calculating weight values of the regions, configuring a macroblock included in a second region of a second frame as an intra macroblock, based on the number of the first region. The second region corresponds to the first region.
Abstract:
Provided are a depth information based optical distortion correction (ODC) circuit and method. The ODC circuit includes a depth acquisition unit acquiring a depth of an image, a grid generation unit dynamically generating a correction grid corresponding to the depth of the image using depth information of the image and a projection matrix, and a distortion correction unit correcting optical distortion in the image using the correction grid. The corrected image can then be stored, transmitted, or otherwise output. The image can be a single static image or photograph or a frame in a video recording.
Abstract:
A transform processor may process original data that includes video information by using at least one of first and second processing methods, and generates at least one of first and second transformed data. Index determination logic may determine an index satisfying a determination condition based on at least one of the first and second transformed data. Energy compaction determination logic may determine energy compaction of at least one of the first and second transformed data based on the determined index. Output selection logic may selectively output one of the first and second transformed data based on the determined energy compaction. An entropy encoder may encode data output from the output selection logic.