Abstract:
A method for reducing a moire fringe includes calculating a moire fringe width for each of different angles between a microlens array and pixels of a display screen. The method includes determining, to be a final inclination angle between the microlens array and the pixels of the display screen, one of the different inclination angles that corresponds to a minimum width among the calculated moire fringe widths.
Abstract:
An image processing method and apparatus are provided. The image processing method may include determining whether stereoscopic objects that are included in an image pair and that correspond to each other are aligned on the same horizontal line. The method includes determining whether the image pair includes target objects having different geometric features from those of the stereoscopic objects if the stereoscopic objects are not aligned on the same horizontal line. The method includes performing image processing differently for the stereoscopic objects and for the target objects if the image pair includes the target objects.
Abstract:
Provided is an apparatus and method for calibrating a multi-layer three-dimensional (3D) display (MLD) that may control a 3D display including a plurality of display layers to display a first image on one of the plurality of display layers, acquire a second image by capturing the first image, calculate a homography between the display layer and an image capturer based on the first image and the second image, and calculate geometric relations of the display layer with respect to the image capturer based on the calculated homography.
Abstract:
A method of processing a stereoscopic video includes determining whether a current frame of a stereoscopic video is a video segment boundary frame; determining whether an image error is included in the current frame when the current frame is the video segment boundary frame; and processing the current frame by removing, from the current frame, a post inserted object (PIO) included in the current frame when the image error is included in the current frame.
Abstract:
A three-dimensional (3D) display apparatus and method are provided. The 3D display apparatus may include a display screen configured to display each of a plurality of sub-images included in a single frame of a 3D image using a time-division multiplexing (TDM), a polarizer configured to polarize each of the displayed sub-images by changing a polarization direction using the TDM, in synchronization with the display screen, and microlens arrays arranged in a plurality of layers and configured to sequentially refract the polarized sub-images, respectively.
Abstract:
A display device may include a plurality of display panels, and light path adjusters disposed on upper portions of the plurality of the display panels. The light path adjusters include a lens array configured to transfer different beams emitted from the plurality of display panels to each eye of a user, and a joint removal structure disposed on one side of the light path adjusters corresponding to a connecting joint that connects the plurality of display panels. The joint removal structure is configured to refract the beams emitted from the plurality of display panels.
Abstract:
A feature point positioning apparatus includes a memory storing computer-executable instructions; and one or more processors configured to execute the computer-executable instructions such that the one or more processors are configured to, iteratively update a first form coefficient based on, a nonlinear feature extracted from an image, and a regression factor matrix obtained through training, and detect a position of the feature point of the image based on, the updated first form coefficient, and a statistical form model obtained through training.
Abstract:
A method of determining eye position information includes identifying an eye area in a facial image; verifying a two-dimensional (2D) feature in the eye area; and performing a determination operation including, determining a three-dimensional (3D) target model based on the 2D feature; and determining 3D position information based on the 3D target model.
Abstract:
Provided are methods and apparatuses for calibrating a three-dimensional (3D) image in a tiled display including a display panel and a plurality of lens arrays. The method includes capturing a plurality of structured light images displayed on the display panel, calibrating a geometric model of the tiled display based on the plurality of structured light images, generating a ray model based on the calibrated geometric model of the tiled display, and rendering an image based on the ray model.
Abstract:
The present invention provides a method and device for adjusting resolution of a Head-Mounted Display (HMD) apparatus. Wherein, the method comprises the steps of: determining saliency information of display contents in multimedia information; adjusting, according to the saliency information, resolution corresponding to each display content in the multimedia information; and, displaying the resolution-adjusted multimedia information. In the present invention, by determining saliency information of display contents in multimedia information, the resolution corresponding to the display contents is adjusted, which enable the resolution of the display contents to be matched with the saliency of the display contents, and accordingly, the resolution-adjusted multimedia information is displayed without the need of displaying the complete multimedia information in a higher resolution and a higher frame rate. In this way, computation amount for a device is greatly reduced, so that requirement for device hardware is reduced and device cost is reduced, and displaying efficiency is improved whilst at the same time ensuring good displaying effect.