Abstract:
Provided is an application providing method of an electronic device, the application providing method including: obtaining manipulation information of a user with respect to an application provided by the electronic device; obtaining feeling information of the user; modifying a user interface of the application based on the manipulation information and the feeling information of the user; and providing the application including the modified user interface.
Abstract:
A three-dimensional (3D) display apparatus and method are provided. The 3D display apparatus may include a display screen configured to display each of a plurality of sub-images included in a single frame of a 3D image using a time-division multiplexing (TDM), a polarizer configured to polarize each of the displayed sub-images by changing a polarization direction using the TDM, in synchronization with the display screen, and microlens arrays arranged in a plurality of layers and configured to sequentially refract the polarized sub-images, respectively.
Abstract:
A display device may include a plurality of display panels, and light path adjusters disposed on upper portions of the plurality of the display panels. The light path adjusters include a lens array configured to transfer different beams emitted from the plurality of display panels to each eye of a user, and a joint removal structure disposed on one side of the light path adjusters corresponding to a connecting joint that connects the plurality of display panels. The joint removal structure is configured to refract the beams emitted from the plurality of display panels.
Abstract:
A method of determining eye position information includes identifying an eye area in a facial image; verifying a two-dimensional (2D) feature in the eye area; and performing a determination operation including, determining a three-dimensional (3D) target model based on the 2D feature; and determining 3D position information based on the 3D target model.
Abstract:
A method and apparatus of generating a three-dimensional (3D) image are provided. The method of generating a 3D image involves acquiring a plurality of images of a 3D object with a camera, calculating pose information of the plurality of images based on pose data for each of the plurality of images measured by an inertial measurement unit, and generating a 3D image corresponding to the 3D object based on the pose information.
Abstract:
An image capturing apparatus and an image capturing method are provided. The image capturing apparatus includes an image capturing unit configured to capture an image; and a controller connected to the image capturing unit, wherein the controller is configured to obtain a background image with depth information, position a three-dimensional (3D) virtual image representing a target object in the background image based on the depth information, and control the image capturing unit to capture the target object based on a difference between the target object viewed from the image capturing apparatus and the 3D virtual image in the background image.
Abstract:
A method for reducing a moire fringe includes calculating a moire fringe width for each of different angles between a microlens array and pixels of a display screen. The method includes determining, to be a final inclination angle between the microlens array and the pixels of the display screen, one of the different inclination angles that corresponds to a minimum width among the calculated moire fringe widths.
Abstract:
An image processing method and apparatus are provided. The image processing method may include determining whether stereoscopic objects that are included in an image pair and that correspond to each other are aligned on the same horizontal line. The method includes determining whether the image pair includes target objects having different geometric features from those of the stereoscopic objects if the stereoscopic objects are not aligned on the same horizontal line. The method includes performing image processing differently for the stereoscopic objects and for the target objects if the image pair includes the target objects.
Abstract:
Provided are an apparatus and method for generating an image with a defocused background. According to various aspects, a preview image is used as the basis for extracting a background distribution and a defocused background is generated based on the extracted background distribution. Accordingly, it is not necessary to photograph two or more images to generate a defocused background effect.