Abstract:
A wide band matching network for power amplifier impedance matching, the wide band matching network comprising: a power amplifier transistor connected to an output network; the output network including: a series capacitor; an on-chip transformer connected to the capacitor in series, wherein the transformer and the capacitor act as a second order filter; and a port connected to the capacitor and a receiver switch. MJC/ll
Abstract:
A wide band matching network for power amplifier impedance matching, the wide band matching network comprising: a power amplifier transistor connected to an output network; the output network including: a series capacitor; an on-chip transformer connected to the capacitor in series, wherein the transformer and the capacitor act as a second order filter; and a port connected to the capacitor and a receiver switch.
Abstract:
A wide band matching network for power amplifier impedance matching, the wide band matching network comprising: a power amplifier transistor connected to an output network; the output network including: a series capacitor; an on-chip transformer connected to the capacitor in series, wherein the transformer and the capacitor act as a second order filter; and a port connected to the capacitor and a receiver switch.
Abstract:
An electronic circuit and method are provided. The electronic circuit includes an in-phase (I)-quadrature (Q) amplifier including an I cascode branch and a Q cascode branch, the IQ amplifier configured to receive a differential input and control signals, control, based on the control signals, gate voltages in the I cascode branch and gate voltages in the Q cascode branch, generate an I output signal with the I cascode branch, and generate a Q output signal with the Q cascode branch, and a quadrature coupler configured to perform quadrature summation of the I output signal and the Q output signal and generate a final phase shifted output.
Abstract:
A band-switching network includes a dual-band balun and a switch network. The dual-band balun includes a first output and a second output. The switch network includes a first switch and a second switch in which an input to the first switch is coupled to the first output and an input to the second switch is coupled to the second balanced output. The dual-band balun further includes a primary coil, a first secondary coil and a second secondary coil in which the first secondary coil is coupled to the first balanced output and the second secondary coil is coupled to the second balanced output. In one embodiment, the primary coil and the first secondary coil are coupled by a first coupling factor k1, and the primary coil and the second secondary coil are coupled by a second coupling factor k2 that is different from the first coupling factor k1.
Abstract:
A low noise amplifier for carrier aggregation and non-carrier aggregation is provided. The low noise amplifier includes a plurality of symmetrical half circuits, a plurality of bias circuits, where each of the plurality of bias circuits is connected to one of the plurality of symmetrical half circuits, a plurality of capacitors, where each of the plurality of capacitors is connected to one of the plurality of symmetrical half circuits for Alternating Current (AC) coupling an RF signal containing at least one component carrier, and a control logic circuit connected to each of the plurality of symmetrical half circuits for configuring the low noise amplifier to process one component carrier or a plurality of component carriers.
Abstract:
A communication device, including a plurality of transceiver modules; a storage configured to store calibration information; and at least one processor configured to: generate a first dual-polarized RF signal by controlling a first transceiver module to generate a first RF signal based on the calibration information; measure, by a second transceiver module, a first signal power of the first dual-polarized RF signal; adjust a parameter of the first transceiver module, and generate a second dual-polarized RF signal by controlling the first transceiver module to generate a second RF signal based on the adjusted parameter; measure, by the second transceiver module, a second signal power of the second dual-polarized RF signal; and generate an aligned dual-polarized RF signal by controlling the plurality of transceiver modules to generate a plurality of RF signals based on a result of a comparison between the first signal power and the second signal power.
Abstract:
Disclosed is a millimeter-wave transceiver (TRX) interface including a transmitter (TX) front-end, a receiver (RX) front-end, a TX/RX switch disposed in series between the TX front-end and the RX front-end, a TX output transformer disposed between the TX front-end and an input of the TX/RX switch, a first capacitor, and at least two diodes, wherein the first capacitor and the at least two diodes are connected between the TX output transformer and ground.
Abstract:
An electronic circuit and method are provided. The electronic circuit includes an amplifier including first cascode branch and a second cascode branch, the amplifier being configured to receive a differential input and control signals, control gate voltages in the first cascode branch and gate voltages in the second cascode branch, generate a first output signal with the first cascode branch, and generate a second output signal with the second cascode branch, and a coupler configured to perform a summation of the first output signal and the second output signal, and generate a final phase shifted output, wherein the first cascode branch or the second cascode branch includes a first cascode arm and a second cascode arm.
Abstract:
A wide band matching network for power amplifier impedance matching, the wide band matching network comprising: a power amplifier transistor connected to an output network; the output network including: a series capacitor; an on-chip transformer connected to the capacitor in series, wherein the transformer and the capacitor act as a second order filter; and a port connected to the capacitor and a receiver switch.