Abstract:
A method, a phase shifter, and a user equipment (UE) are disclosed for transmitting and receiving signals in a phased array. The method includes receiving, by a balun of a phase shifter, a transmission single-ended input signal at a single-ended side of the balun and generating a transmission differential input signal at a differential side of the balun, generating, by a differential quadrature coupler of the phase shifter, a transmission in-phase signal and a transmission quadrature signal, based on the transmission differential input signal, and combining, by a differential attenuator of the phase shifter, the transmission in-phase signal and the transmission quadrature signal into a differential phase-shifted output signal.
Abstract:
A variable gain amplifier includes a first transconductor circuit coupled to a first input terminal, a first output terminal, and a second output terminal of the variable gain amplifier, the first transconductor circuit including: a plurality of positive coefficient transistors coupled to the first output terminal and configured to selectively conduct current in response to a first binary code, a plurality of negative coefficient transistors coupled to the second output terminal and configured to selectively conduct current in response to a second binary code, and a plurality of amplifying transistors, each having a gate electrode coupled to the first input terminal, a first electrode coupled to a ground reference, and a second electrode coupled to a pair of coefficient transistors including one of the plurality of positive coefficient transistors and one of the plurality of negative coefficient transistors.
Abstract:
A variable gain amplifier includes a first transconductor circuit coupled to a first input terminal, a first output terminal, and a second output terminal of the variable gain amplifier, the first transconductor circuit including: a plurality of positive coefficient transistors coupled to the first output terminal and configured to selectively conduct current in response to a first binary code, a plurality of negative coefficient transistors coupled to the second output terminal and configured to selectively conduct current in response to a second binary code, and a plurality of amplifying transistors, each having a gate electrode coupled to the first input terminal, a first electrode coupled to a ground reference, and a second electrode coupled to a pair of coefficient transistors including one of the plurality of positive coefficient transistors and one of the plurality of negative coefficient transistors.
Abstract:
A low noise amplifier for carrier aggregation and non-carrier aggregation is provided. The low noise amplifier includes a plurality of symmetrical half circuits, a plurality of bias circuits, where each of the plurality of bias circuits is connected to one of the plurality of symmetrical half circuits, a plurality of capacitors, where each of the plurality of capacitors is connected to one of the plurality of symmetrical half circuits for Alternating Current (AC) coupling an RF signal containing at least one component carrier, and a control logic circuit connected to each of the plurality of symmetrical half circuits for configuring the low noise amplifier to process one component carrier or a plurality of component carriers.
Abstract:
A communication device, including a plurality of transceiver modules; a storage configured to store calibration information; and at least one processor configured to: generate a first dual-polarized RF signal by controlling a first transceiver module to generate a first RF signal based on the calibration information; measure, by a second transceiver module, a first signal power of the first dual-polarized RF signal; adjust a parameter of the first transceiver module, and generate a second dual-polarized RF signal by controlling the first transceiver module to generate a second RF signal based on the adjusted parameter; measure, by the second transceiver module, a second signal power of the second dual-polarized RF signal; and generate an aligned dual-polarized RF signal by controlling the plurality of transceiver modules to generate a plurality of RF signals based on a result of a comparison between the first signal power and the second signal power.
Abstract:
A low noise amplifier for carrier aggregation and non-carrier aggregation is provided. The low noise amplifier includes a plurality of symmetrical half circuits, a plurality of bias circuits, where each of the plurality of bias circuits is connected to one of the plurality of symmetrical half circuits, a plurality of capacitors, where each of the plurality of capacitors is connected to one of the plurality of symmetrical half circuits for Alternating Current (AC) coupling an RF signal containing at least one component carrier, and a control logic circuit connected to each of the plurality of symmetrical half circuits for configuring the low noise amplifier to process one component carrier or a plurality of component carriers.