Abstract:
Provided are a semiconductor device and a semiconductor system, which can increase immunity against noises through tertiary correlated double sampling (CDS). The semiconductor device includes an amplifier that receives noise and a driving signal, resets for each predetermined period of the driving signal and samples the noise to generate first sampled noise. The first sampled noise includes multiple noise differences each occurring between consecutive reset points. A sampler performs second sampling and third sampling on the first sampled noise and performs fourth sampling on the second and third sampled noises. The first sampled noise includes first to third noise differences, the second sampled noise is a difference between the first and second noise differences, the third sampled noise is a difference between the second and third noise differences, and the fourth sampled noise is a difference between the second and third sampled noises.
Abstract:
Provided are a touch processor for performing active protection, a touch display driver integrated circuit (DDI) chip including the touch processor, and a method of operating the touch processor. The touch processor for driving a touch panel including a sensing cell includes a driving circuit configured to provide a driving signal to the touch panel, and a capacitance controller. The capacitance controller is configured to generate a switch control signal for controlling a switch connected to a sensing unit included in the sensing cell, and a compensation signal having a different waveform than the driving signal, so as to reduce a value of an ambient capacitance component of the sensing cell.
Abstract:
A touch sensing device includes a first electrode array, a plurality of second electrodes, and a switching block. The first electrode array includes a plurality of first electrodes. The plurality of second electrodes is disposed apart from the first electrode array in a direction perpendicular to rows and columns of the first electrode array. The switching block electrically connects a first plurality of adjacent electrodes of the plurality of first electrodes with one another when the touch sensing device is in a first mode and connects a second plurality of adjacent first electrodes of the plurality of first electrodes with one another when the touch sensing device is in a second mode.
Abstract:
A touch controller includes a controller receiving a display timing signal and generating a touch sensing control signal synchronously with the display timing signal. The touch controller also includes a sensing circuit driving a touch sensing array in response to the touch sensing control signal in order to generate touch data corresponding to sensing signals provided by the touch sensing array. The sensing circuit provides a first driving signal having a first polarity to at least one driving channel of the touch sensing array during a first display frame period, and provides a second driving signal having a second polarity different from the first polarity during a second display frame period.
Abstract:
A touch sensing apparatus includes a plurality of touch sensors provided in a touch panel and a switching unit for transmitting sensing signals per column or row of the touch sensors through a single line to a touch controller.
Abstract:
A touch controller is provided. The touch controller includes a driving circuit configured to mask some pulses of a first pulse signal having a certain frequency to generate a second pulse signal, and supply the second pulse signal to a touch panel as a driving signal and a sensing circuit configured to receive a sensing signal generated by the touch panel based on the driving signal and generate touch data, based on the sensing signal.
Abstract:
A touch display system includes a display system including a plurality of pixels, a touch system disposed on the display system and comprising a plurality of touch sensor electrodes, and a power management integrated circuit (PMIC) configured to supply power and a modulated ground (GND) voltage to the display system and the touch system.
Abstract:
A touch controller includes a touch data generator that is connected to a plurality of sensing lines, the touch data generator sensing a change in capacitance of a sensing unit connected to each of the sensing lines and generating touch data by processing the sensing signal corresponding to the result of sensing; and a signal processor that controls a timing of generating the touch data by receiving at least one piece of timing information for driving a display panel from a timing controller, and then providing either the timing information or a signal generated from the timing information as a control signal to the touch data generator.
Abstract:
A touch controller includes a touch data generator that is connected to a plurality of sensing lines, the touch data generator sensing a change in capacitance of a sensing unit connected to each of the sensing lines and generating touch data by processing the sensing signal corresponding to the result of sensing; and a signal processor that controls a timing of generating the touch data by receiving at least one piece of timing information for driving a display panel from a timing controller, and then providing either the timing information or a signal generated from the timing information as a control signal to the touch data generator.
Abstract:
A touch sensing device includes a touch panel and a receiving unit. The touch panel generates first to third receiving signals corresponding to a touch occurring at the touch sensing device. The receiving unit is connected to the touch panel through first to third receiving lines to receive the first to third receiving signals through the first to third receiving lines, respectively. The receiving unit includes a differential signal generator for excluding a first common signal common to the first and second receiving signals from each of the first and second receiving signals to generate first differential signals when a first touch sensing operation is performed. The differential signal generator excludes a second common signal common to the second and third receiving signals from each of the second and third receiving signals to generate second differential signals when a second touch sensing operation is performed.