Abstract:
A measurement optical system and an overlay measurement method using the same are provided. The measurement optical system includes: a light source configured to emit infrared light; a light splitter configured to reflect, from the light source and to a subject, a first portion of the infrared light incident to the light splitter; a photodetector on a same optical axis as the light splitter and configured to receive a second portion of the infrared light reflected from the subject; a first lens optical system between the light splitter and the photodetector; and a second lens optical system between the first lens optical system and the photodetector, wherein the subject may include an alignment key on which a meta key is provided.
Abstract:
An image sensor includes a plurality of lens elements, each lens element of the plurality of lens elements including a plurality of scatterers arranged to concentrate light incident on the image sensor; and a sensing element configured to sense light passing through the plurality of lens elements, wherein one lens element of the plurality of lens elements has a first focal length that is different from a second focal length of another lens element of the plurality of lens elements and is separated from the sensing element by the first focal length.
Abstract:
Provided is an imaging device including a sensing array including a plurality of sensing elements, an imaging lens array including a plurality of imaging optical lenses, each of the plurality of imaging optical lenses having a non-circular cross-section perpendicular to an optical axis, and configured to transmit light received from an outside of the imaging device, and a condensing lens array including a plurality of condensing lenses disposed between the imaging lens array and the sensing array, and configured to transmit the light passing through the imaging lens array to the sensing elements, wherein a number of the plurality of imaging optical lenses is less than a number of the plurality of condensing lenses.
Abstract:
A calibration method and apparatus are provided. The calibration method includes sensing spots at which collimated light passing through multiple lenses is imaged on a sensor and determining a transformation matrix configured to restore an image acquired using the multiple lenses based on the spots.
Abstract:
A light source device may include a first light source, a second light source, a light guide plate (LGP) configured to guide a light incident from at least one of the first light source and the second light source, an optical film configured to form a distribution of directional light by controlling a progress path of a light output from the LGP, and a controller configured to control activation of at least one of the first light source and the second light source in order to control the distribution of directional light.
Abstract:
An image sensor includes a plurality of thin lens elements, each of the plurality of thin lens elements including a plurality of scatterers configured to concentrate light of a partial wavelength band among light incident on the image sensor. The image sensor further includes a micro lens array configured to concentrate light of another wavelength band wider than the partial wavelength band, and a sensing element configured to sense light passing through the plurality of thin lens elements and the micro lens array.
Abstract:
Provided are an image processing method and an image processing device. The image processing method includes generating an image based on viewpoint information of a user; rendering the image based on information about what is in front of the user; and outputting the rendered image using an optical element.
Abstract:
A three-dimensional (3D) display apparatus is provided. The 3D display apparatus includes a display panel configured to output pixel values that respectively correspond to a preset number of viewpoints, and an optical layer that is provided in front of or behind the display panel and that is configured to adjust directions of rays output from the display panel or to provide light to the display panel so that the rays diverge.
Abstract:
An optical layer may include a barrier. The barrier may include slits arranged in the barrier so that vertically neighboring slits from among the slits are connected to each other. The slits are configured to transmit light through the barrier.