Abstract:
A method for per-span optical fiber nonlinearity compensation comprises determining values of fiber parameters characterizing one or more target optical fibers in one or more respective spans of a link, and applying selected weight values to one or more photonic computing chips (PCCs), each PCC integrated in a different respective span of the link, wherein selection of the weight values is based on the values of the fiber parameters and a mapping associated with each PCC. The method further comprises transmitting an optical signal through the link, wherein each integrated PCC emulates an inverse of a nonlinear transfer function of the target optical fiber in the respective span, thereby reducing nonlinearity contributed by the one or more target optical fibers to the optical signal.
Abstract:
A system is provided for improved coupling of photodetectors to optical demultiplexer outputs, for example an arrayed waveguide grating (AWG), using a refractive index matched material. In one embodiment, the system may include an optical demultiplexer including multiple optical outputs corresponding to multiple signal channels and a photodetector array including a plurality of photodiodes aligned with the multiple optical outputs. The system may also include an epoxy disposed within a gap between each of the photodiodes and each of the corresponding optical outputs of the optical demultiplexer. The epoxy may be configured to provide an index of refraction that is matched to the optical demultiplexer.
Abstract:
Optical telecommunication receivers and transmitters are described comprising dispersive elements and adjustable beam steering elements that are combined to provide optical grid tracking to adjust with very low power consumption to variations in the optical grid due to various changes, such as temperature fluctuations, age or other environmental or design changes. Thus, high bandwidth transmitters or receivers can be provides with low power consumption and/or low cost designs.
Abstract:
The invention provides an optical device, including a light-transmissive substrate, and a pair of different, parallel gratings including a first grating and second grating, located on the substrate at a constant distance from each other, each of the pair of parallel gratings including at least one sequence of a plurality of parallel lines, wherein the spacings between the lines gradually increase from one edge of the grating up to a maximum distance between the lines, and wherein the arrangement of lines in the second grating is in the same direction as that of the first grating. A system utilizing a plurality of such optical devices is also disclosed.
Abstract:
The invention provides an optical device, including a light-transmissive substrate, and a pair of different, parallel gratings including a first grating and a second grating, located on the substrate at a constant distance from each other, each of the pair of parallel gratings including at least one sequence of a plurality of parallel lines, wherein the spacings between the lines gradually increase from one edge of the grating up to a maximum distance between the lines, and wherein the arrangement of lines in the second grating is in the same direction as that of the first grating. A system utilizing a plurality of such optical devices is also disclosed.
Abstract:
An optical instrument for splitting optical spectrum, comprising a series of hollow core optical wave guides (12, 22, and so on) connected by optical couplers (16, 26, and so on) transporting broad band incident optical wave from one stage to another, a narrow band optical wave guide (14, 24, and so on) made of photonic crystal materials mounted inside each of said hollow core optical wave guide and along it, and specified for confining certain portion of the incident optical spectrum. Said inner narrow band optical wave guides bend out at the ends of said outer hollow core optical wave guides to extract and guide out the selected component of the incident optical spectrum. Said optical couplers couple the output optical waves of said outer hollow core wave guides of the previous stages into said inner optical wave guides of the next stages for further splitting.
Abstract:
In optical signal transmission, an input optical signal is received that has double side band (DSB) spectral characteristics. The input optical signal is optically filtered to produce an output optical signal having single side band (SSB) spectral characteristics. The output optical signal is caused to include a soliton pulse. In optical signal transmission, a modulated RZ optical signal is formed from an input optical signal. The modulated RZ optical signal has single side band (SSB) spectral characteristics. A data modulated optical signal is formed from the modulated RZ optical signal. The data modulated optical signal includes a soliton optical signal that has SSB spectral characteristics and that includes a soliton pulse. The peak power and the mid-amplitude width of the soliton pulse are linked by a relationship that depends on the characteristics of an optical medium in which the soliton pulse travels.
Abstract:
Embodiments include a fiber to photonic chip coupling system including a collimating lens which collimate a light transmitted from a light source and an optical grating including a plurality of grating sections. The system also includes an optical dispersion element which separates the collimated light from the collimating lens into a plurality of light beams and direct each of the plurality of light beams to a respective section of the plurality of grating sections. Each light beam in the plurality of light beams is diffracted from the optical dispersion element at a different wavelength a light beam of the plurality of light beams is directed to a respective section of the plurality of grating sections at a respective incidence angle based on the wavelength of the light beam of the plurality of light beams to provide optimum grating coupling.
Abstract:
A light guide element includes a light-guiding substrate and a diffraction part formed on a surface of the light-guiding substrate. The diffraction part includes an optical layer capable of exerting a diffractive action. The distance from the light-guiding substrate to a surface of the optical layer is equal to or less than 10% of a thickness of the light-guiding substrate. The light guide element satisfies |ΔD|≦0.15 mm, where ΔD is an amount of a change in D with the temperature change ΔT, D [mm] is a distance, at the temperature T (° C.), between the center of the diffraction part and a position predetermined as a position where the ray of light comes out of the light-guiding substrate in a direction horizontal with respect to the light-guiding substrate, and ΔT is a temperature change.
Abstract:
A display system includes a display alignment tracker configured track the position of a first signal and the position of a second signal. The display alignment tracker optically multiplexes a portion of a first signal and a portion of the second signal into a combined optical signal and measures a differential between the first signal and the second signal.