Abstract:
An image sensor is disclosed. The image sensor includes a plurality of pixels arranged in a plurality of rows and a plurality of columns, each of the pixels including: a photodiode; a floating diffusion node configured to accumulate photocharges generated from the photodiode; a first capacitor configured to store charges according to a voltage of the floating diffusion node which is reset; a second capacitor configured to store charges according to a voltage of the floating diffusion node in which the photocharges are accumulated; a first sampling transistor connected to a first output node and configured to sample charges to the first capacitor; a second sampling transistor connected to the first output node and configured to sample charges to the second capacitor; and at least one precharge select transistor connected to the first output node and configured to reset the first output node.
Abstract:
An image sensor is disclosed. The image sensor includes a plurality of pixels arranged in a plurality of rows and a plurality of columns, each of the pixels including: a photodiode; a floating diffusion node configured to accumulate photocharges generated from the photodiode; a first capacitor configured to store charges according to a voltage of the floating diffusion node which is reset; a second capacitor configured to store charges according to a voltage of the floating diffusion node in which the photocharges are accumulated; a first sampling transistor connected to a first output node and configured to sample charges to the first capacitor; a second sampling transistor connected to the first output node and configured to sample charges to the second capacitor; and at least one precharge select transistor connected to the first output node and configured to reset the first output node.
Abstract:
An image sensor including: first and second capacitors; a first transistor between a photodiode and a floating diffusion node, and receiving a transfer signal; a second transistor between a first power terminal and the floating diffusion node and receiving a reset signal; a third transistor between a second power terminal and a first node and having a gate connected to the floating diffusion node; a fourth transistor between the first node and a column line and receiving a precharge signal; a fifth transistor between the first capacitor and a feedback node and receiving a first sampling signal; a sixth transistor between the second capacitor and feedback node and receiving a second sampling signal; a seventh transistor between the first node and feedback node and receiving a first switch signal; and an eighth transistor between the floating diffusion and feedback nodes and receiving a second switch signal.
Abstract:
A semiconductor device includes an active pillar that protrudes above a substrate, the active pillar including a pair of vertical sections and a body interconnection between the pair of vertical sections, and each of the pair of vertical sections having a channel body and a lower impurity region below the channel body, word lines coupled to respective channel bodies, and buried bit lines in contact with respective lower impurity regions, wherein the channel bodies are connected to the substrate through the body interconnection.
Abstract:
Provided are a pixel array and an image sensor. The pixel array includes a plurality of pixels, which are arranged in a matrix form and which convert an optical signal into an electrical signal. The pixel array includes a first pixel arranged in a first row of the pixel array and a second pixel arranged in a second row of the pixel array, wherein each of the first pixel and the second pixel includes a first memory storing a digital reset value according to internal noise, the first memory of the first pixel stores m-bit data (where m is a natural number equal to or greater than 2), and the first memory of the second pixel stores n-bit data (where n is a natural number less than m).
Abstract:
An earphone connection interface is provided. The earphone connection interface includes a first detector disposed at a first area to detect an electrical change according to a contact state of the first area, and a second detector disposed at a second area different from the first area to detect an electrical change according to a contact state of the second area
Abstract:
An image sensor includes a photoelectric conversion element in a first semiconductor substrate, a second semiconductor substrate on the first semiconductor substrate, a source follower transistor on the second semiconductor substrate, and a through-plug penetrating the second semiconductor substrate. The through-plug electrically connects the photoelectric conversion element to the source follower transistor. A source terminal of the source follower transistor is electrically connected to the second semiconductor substrate.
Abstract:
An image sensor includes a first substrate including an analog block and a digital block, an isolation structure extending through the first substrate and dividing the analog block from the digital block, a first transistor on the digital block, a second transistor on the analog block, a wiring on and electrically connected to the second transistor, a second substrate on the wiring, a color filter array layer on the second substrate and including color filters, a microlens on the color filter array layer, a light sensing element in the second substrate, a transfer gate (TG) extending through a lower portion of the second substrate adjacent to the light sensing element, and a floating diffusion (FD) region at a lower portion of the second substrate adjacent to the TG and electrically connected to the wiring.
Abstract:
An image sensor includes a substrate including a first surface and a second surface, a first transmission gate electrode on the first surface of the substrate, a storage node on the first surface of the substrate and including a first storage gate electrode isolated from direct contact with the first transmission gate electrode, a dielectric layer on the first storage gate electrode, and a semiconductor layer on the dielectric layer. The image sensor may include a first cover insulating layer on the semiconductor layer and vertically overlapping the first transmission gate electrode, and an organic photoelectric conversion layer on an upper surface of the semiconductor layer and an upper surface of the first cover insulating layer.
Abstract:
According to an example embodiment, a variable resistance memory device includes a lower electrode that includes a spacer-shaped first sub lower electrode and a second sub lower electrode covering a curved sidewall of the first sub lower electrode. The second sub lower electrode extends upward to protrude above the top of the first sub lower electrode. The lower electrode includes an upward-tapered shape.