Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting higher data transfer rates than that of a beyond 4G communication system such as LTE. A control method of a terminal in a wireless communication system, according to an embodiment of the present invention, may comprise the steps of: receiving radio resource control signaling (RRC signaling) for a signal measured by a terminal; identifying a transmission interval of a signal measured by the terminal, on the basis of the received RRC signaling; identifying first information for forming a predetermined beam; and determining whether to change the first information for forming a beam to second information for forming a beam, on the basis of the identified transmission interval.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting higher data transmission rate beyond a 4G communication systems such as LTE. A method by a terminal in a wireless communication system according to an embodiment of the present invention comprises the steps of: deciding the release of the connection to a secondary node; generating a connection release request message for requesting the connection release; and transmitting the connection release request message.
Abstract:
The present disclosure relates to a communication technique for convergence of IoT technology and a 5G communication system for supporting a higher data transfer rate beyond a 4G system, and a system therefor. The present disclosure can be applied to intelligent services (for example, smart homes, smart buildings, smart cities, smart or connected cars, health care, digital education, retail business, and services associated with security and safety) on the basis of 5G communication technology and IoT-related technology. The present disclosure relates to a method and an apparatus for detecting downlink transmission in an unlicensed band.
Abstract:
Disclosed are a communication technique for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G communication system, and a system therefor. The present disclosure can be applied to intelligent services (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail, security and safety-related services, and the like) on the basis of 5G communication technology and IoT-related technology. The present disclosure can be applied to: an operating method of a base station, including the steps of transmitting a synchronization signal (SS) measurement report request to a terminal, receiving, from the terminal, a first measurement report including SS measurement information on a neighboring base station, transmitting to the terminal, a channel state information-reference signal (CSI-RS) measurement report request on the basis of the first measurement report, and receiving, from the terminal, a second measurement report including the CSI-RS measurement information on the neighboring base station, the base station; a terminal communicating with the base station; and an operating method of the terminal.
Abstract:
Disclosed is a 5G or pre-5G communication system for supporting a data transmission rate higher than that of a 4G communication system such as LTE. According to an embodiment of the present invention, a method for a terminal in a wireless communication system comprises: receiving system information and radio resource control (RRC) configuration information; identifying decoding-related information including an aggregation level based on the system information and/or the RRC configuration information; and decoding control information on the basis of the aggregation level.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method for a terminal may include: identifying a reference subcarrier spacing value; receiving random access channel (RACH) configuration information; determining a resource to be used for transmitting a random access preamble based on the RACH configuration information and the reference subcarrier spacing value; and transmitting the random access preamble using the determined resource.
Abstract:
An example communication method in a terminal of a mobile communication system includes: receiving, from a base station, first information associated with a resource allocation scheme for a first service and a second service; receiving, from the base station, control information associated with the first service; and receiving, from the base station, data for the first service on the basis of the control information and the first information.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method for a terminal may include: identifying a reference subcarrier spacing value; receiving random access channel (RACH) configuration information; determining a resource to be used for transmitting a random access preamble based on the RACH configuration information and the reference subcarrier spacing value; and transmitting the random access preamble using the determined resource.
Abstract:
A method is provided. The method includes executing a camera application at an electronic device; activating a heart rate monitor (HRM) sensor operatively coupled with a first surface of the electronic device in response to the execution of the camera application; receiving an input signal via the HRM sensor; and capturing, using a processor operatively coupled with the electronic device, an image via an image sensor operatively coupled with a second surface of the electronic device based at least in part on the input signal.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system for supporting higher data transfer rates than that of a beyond 4G communication system such as LTE. A control method of a terminal in a wireless communication system, according to an embodiment of the present invention, may comprise the steps of: receiving radio resource control signaling (RRC signaling) for a signal measured by a terminal; identifying a transmission interval of a signal measured by the terminal, on the basis of the received RRC signaling; identifying first information for forming a predetermined beam; and determining whether to change the first information for forming a beam to second information for forming a beam, on the basis of the identified transmission interval.