摘要:
This invention describes an attenuating phase shifting mask, a method of forming the attenuating phase shifting mask, and a method of using the attenuating phase shifting mask to expose a contact hole pattern having both dense and isolated contact holes on a layer of photosensitive dielectric. The mask has a rim of first attenuating phase shifting material, having a first transmittance and providing a phase shift of 180°, surrounding the dense holes and a rim of second attenuating phase shifting material, having a second transmittance and providing a phase shift of 180°, surrounding the isolated holes. The second transmittance is greater than the first transmittance. The dense holes have a duty ratio of less than 2.0 and the isolated holes have a duty ratio of greater than or equal to 2.0. The second attenuating phase shifting material results from treating the first attenuating phase shifting material for a first time with a first solution which increases the transmittance and changes the phase shift. The attenuating phase shifting material is then treated with a second solution for a second time to restore the phase shift to 180° and further increase the transmittance.
摘要:
A simple, cost-effective method for forming a lithography mask with a directly imaged portion and an attenuated, phase shifted portion. In particular, the use of such a method for forming an outrigger-type phase shift mask. The mask is formed on a blank consisting of a transparent quartz substrate over which is an attenuating phase shift layer and an optically opaque layer, by a process that produces a pattern in an E-beam sensitive resist with two different E-beam energy depositions. The higher energy deposition is used to form the main pattern, while the lower energy deposition forms the pattern for the outrigger.
摘要:
A mask combining an alternating phase shift part and an attenuating phase shift part on a single blank and a method of forming said mask. The method involves fewer processing steps, fewer layers of material and is more cost effective than other methods in the current art. A central reason for the simplicity of the method is the use of different intensity levels of E-beam exposure in a single resist layer and achieving phase shifts by transmitting radiation through alternating regions of the same transparent substrate that are etched and not etched.
摘要:
A method for modulating the phase angle of a phase shift mask employed in deep ultraviolet (DUV) photolithography. There is provided a quartz substrate within which may be formed an engraved pattern, and upon which is formed a patterned phase shift layer. The phase angle of the phase shift layer upon the quartz substrate may be incrementally increased or decreased by subtractive etching of the phase shift layer and quartz substrate of the phase shift mask in an alkaline solution at a selected temperature and concentration for a period of time.
摘要:
A method for forming a patterned microelectronics layer employing electron beam lithography in a sensitive material upon a substrate with optimal correction for proximity effects resulting from electron back scattering into the resist material. There is provided a substrate having formed thereon a layer of resist material sensitive to electron beam exposure. There is then exposed the sensitive layer to a vector scan shaped electron beam to write a primary pattern with dose correction of the beam dose for proximity effects due to electron scattering at each point in the primary pattern. There is then written a secondary pattern which is a negative reversed image of the primary pattern in a secondary exposure employing a vector scan shaped focused electron beam at an exposure dose substantially below the primary beam dose, there being provided a gap between the primary pattern and the secondary pattern. There is then developed the primary pattern in the sensitive resist layer to form the final corrected pattern on the substrate. The patterned layer of resist material may be employed directly on the substrate on which it is formed, or alternatively the patterned resist layer may be employed formed over an opaque layer upon the transparent substrate and subsequently the pattern etched into the opaque layer to form a photomask.
摘要:
A method of forming a high transmittance attenuated phase-shifting mask blank, comprising the following steps. An attenuated phase-shifting mask is provided that includes a shifter layer overlying a transparent substrate. The attenuated phase-shifting mask having a first transmittance and an initial phase angle. The attenuated phase-shifting mask and more specifically the shifter layer is treated with an aqueous solution of NH4OH:H2O2 for a first predetermined time increasing the first transmittance to a second transmittance and decreasing the initial phase angle to a second phase angle. The attenuated phase-shifting mask is then treated with a selected acid or base for a second predetermined time increasing the second transmittance to a third, predetermined transmittance and increasing the phase angle to a third, predetermined phase angle. The third phase angle is preferably substantially identical to the initial phase angle.
摘要:
A mask and a method of forming a mask having a binary mask pattern in a first region of a transparent mask substrate and a rim type attenuating phase shifting mask pattern in a second region of the same transparent mask substrate. The rim type attenuating phase shifting mask pattern is used to form small contact holes and the binary mask pattern is used to form larger contact holes in an integrated circuit wafer. The use of the rim type attenuating phase shifting mask pattern and the binary mask pattern avoids the problems due to side lobe effect for cases where different size contact holes are required on the same layer in an integrated circuit wafer. The formation of the rim type attenuating phase shifting mask pattern and the binary mask pattern on the same transparent mask substrate increases throughput and decreases cost in the fabrication of integrated circuit wafers.
摘要:
A new process for fabricating an attenuated phase-shifting photomask is described. A photomask blank is provided comprising a phase-shifting layer overlying a substrate, a chromium layer overlying the phase-shifting layer, and a resist layer overlying the chromium layer. The resist layer of the photomask blank is exposed to electron-beam energy wherein a main pattern area of the photomask blank is exposed to a first dosage of the electron-beam energy and wherein a border area surrounding the main pattern area is not exposed to the electron-beam energy and wherein a secondary pattern area between the main pattern area and the border area is exposed to a second dosage of electron-beam energy wherein the second dosage is lower than the first dosage. The exposed resist layer is developed wherein the resist within the main pattern area is removed to expose the chromium layer. The exposed chromium layer is etched through to expose the underlying phase-shifting layer. The exposed phase-shifting layer is etched through to expose the substrate. The resist overlying the chromium layer within the secondary pattern area is etched away. The chromium layer within the secondary pattern area is etched away. The resist within the border area is stripped away to leave a patterned phase-shifting layer in the main pattern area and a chromium layer in the border area to complete fabrication of the attenuated phase-shifting photomask.
摘要:
A method of correcting, or compensating for errors encountered in the transfer of patterns is disclosed for use with high resolution e-beam lithography. In a first embodiment, optical proximity effects are incorporated into the e-beam proximity effects by superimposing the two effects to arrive at a compensated dosage level database to produce the desired patterns. In a second embodiment, etching effects are also superimposed on the previous driving database by compensating the e-beam proximity data twice, that is, by over correcting it, to further improve the transfer of patterns without the undesirable effects. It is shown that corrections for a number of other process steps can also be incorporated into the database that drives the e-beam lithography machine in order to achieve high resolution patterns of about one-quarter-micron technology.
摘要:
Improvement in the quality of photoresist images has been achieved. The data file in which the full description of the photoresist image, including Optical Proximity Corrections, has been stored is split into two subfiles. The split is made on the basis of separating cell descriptions (where the density of lines is high) from peripheral area descriptions (where lines tend to be isolated). A suitable bias in the form of a small increase or decrease (as appropriate) of all dimensions in the subfile is then applied. After the application of bias, the subfiles are merged back into a single data file and processing proceeds as usual.