摘要:
A high-speed sampling system and an analog to digital converter are disclosed. One embodiment of a method of sampling a signal includes receiving an analog signal and generating first samples at a rate of Fs, and generating second sub-samples from the first samples at a rate of Fs/N and having a relative phase of approximately (360/N)*(i−1) degrees, where i varies from 1 to N. In a first embodiment, at most two second sub-samplers are tracking the output of the first sampler at any point in time. In a second embodiment, only one of the N second sub-samplers are tracking the output of the first sampler at any point in time. A third embodiment further includes generating third samples from the second samples at a rate of Fs/N, and having a relative phase of approximately ((360/N)*(i−1)+180) degrees. A method of interleaved analog to digital converting includes corresponding time interleaved ADCs receiving the third samples.
摘要:
Apparatuses, methods, and systems for power supply stacking of an array of devices are disclosed. For an embodiment, each device is specified by a location (i,j), each device includes a Vdd terminal, and a Vss terminal, at least a plurality of the devices further including at least one other V_Terz terminal. For an embodiment, the Vss terminal of the device at location (i,j), for i=2:N, j=1:M, is connected to the Vdd terminal of the device at location (i−1,j) resulting in a voltage between the Vdd and Vss terminals of at least a majority of the devices in the array to be a substantially same voltage VDD, wherein the potential of the Vss terminal of the each device at any location (i,j+1) is generated to be higher than the potential of the Vss terminal for another device at location (i,j) by a voltage Xj, for i=1:N, j=1:M−1.
摘要:
A CMOS gain stage includes biasing circuitry configured to insure saturation of a subsequent stage without a source follower circuit. The CMOS gain stage is optionally powered by a supply voltage that is greater than a permitted supply voltage for a processes technology that is used to fabricate the CMOS gain stage. In order to protect CMOS devices within the CMOS gain stage, optional drain-to-bulk junction punch-through protection circuitry is disclosed. A variety of optional features can be implemented alone and/or in various combinations of one another. Optional features include process-voltage-temperature (“PVT”) variation protection circuitry, which renders a gain relatively independent of process, voltage, and/or temperature variations. Optional features further include bandwidth enhancement circuitry.
摘要:
A CMOS gain stage includes biasing circuitry configured to insure saturation of a subsequent stage without a source follower circuit. The CMOS gain stage is optionally powered by a supply voltage that is greater than a permitted supply voltage for a processes technology that is used to fabricate the CMOS gain stage. In order to protect CMOS devices within the CMOS gain stage, optional drain-to-bulk junction punch-through protection circuitry is disclosed. A variety of optional features can be implemented alone and/or in various combinations of one another. Optional features include process-voltage-temperature (“PVT”) variation protection circuitry, which renders a gain relatively independent of process, voltage, and/or temperature variations. Optional features further include bandwidth enhancement circuitry.
摘要:
An automobile includes a door, inner and outer rocker panels, and a floor pan joined to the inner rocker panel. A structural frame extends under the body. A frame standoff member is mounted to the inner rocker panel and extends inboard to a frame rail. The frame standoff member is separated from the frame rail by a clearance gap. Once the gap is closed due to lateral deformation of the door, rocker panels, and floor pan, the frame standoff member will resist further deformation of the door and rocker panels without dynamically coupling the door or rocker panels to the frame rail during normal operation of the vehicle.
摘要:
Apparatuses, methods, and systems for power supply stacking of an array of devices are disclosed. For an embodiment, each device is specified by a location (i,j), each device includes a Vdd terminal, and a Vss terminal. For an embodiment, the Vss terminal of each of the devices in the first majority of the devices at location (i,j), is connected to the Vdd terminal of the device at location (i−1,j), wherein the potential of the Vss terminal of the each device at any location (1,j+1) is higher than the potential of the Vss terminal for another device at location (1,j) by a voltage Xj, for j=1:M−1, wherein a sum of all Xj voltages for j=1:(M−1) is greater than 0.25*VDD.
摘要:
Apparatuses, methods, and systems for power supply stacking of an array of devices are disclosed. For an embodiment, each device is specified by a location (i,j), each device includes a Vdd terminal, and a Vss terminal, at least a plurality of the devices further including at least one other V_Terz terminal. For an embodiment, the Vss terminal of the device at location (i,j), for i=2:N, j=1:M, is connected to the Vdd terminal of the device at location (i−1,j) resulting in a voltage between the Vdd and Vss terminals of at least a majority of the devices in the array to be a substantially same voltage VDD, wherein the potential of the Vss terminal of the each device at any location (i,j+1) is generated to be higher than the potential of the Vss terminal for another device at location (i,j) by a voltage Xj, for i=1:N, j=1:M−1.
摘要:
Apparatuses, methods, and systems for power supply stacking of an array of devices are disclosed. For an embodiment, each device is specified by a location (i,j), each device includes a Vdd terminal, and a Vss terminal, at least a plurality of the devices further including at least one other V_Terz terminal. For an embodiment, the Vss terminal of the device at location (i,j), for i=2:N, j=1:M, is connected to the Vdd terminal of the device at location (i−1,j) resulting in a voltage between the Vdd and Vss terminals of at least a majority of the devices in the array to be a substantially same voltage VDD, wherein the potential of the Vss terminal of the each device at any location (i,j+1) is generated to be higher than the potential of the Vss terminal for another device at location (i,j) by a voltage Xj, for i=1:N, j=1:M−1.
摘要:
A method and system is described for managing the development of software source code, and in addition, collecting useful metrics about the development process. A first source code is provided in a desired state. The desired state may be the requirement that the source code can be built or the desired state may be the requirement that the source code can be built and pass one or more tests. A second source code is then received. The second source may be a modified copy of the source code. It is then determined whether the second source code is in the desired state, and the first source code is updated using the second source code in response to the second source code being in the desired state. Metrics that may be collected include: the name of a task, time to complete the task, line of code involved, etc.
摘要:
An device and method for a pre-sampling processing is disclosed. The pre-sampling device includes a single amplifier having a virtual ground node, and a feed back circuit connected from an output of the amplifier to the virtual ground node. The feed back circuit includes a plurality of switches connected to the virtual ground node. The switches control a plurality of programmable gain settings. The feed back circuit also includes an adjustable current source that is adjusted according to an estimated echo signal. A current of the adjustable current source is summed at the virtual ground node. The feed back circuit also includes a low pass filter that is tuned to suppress received signal frequencies above a fraction of a sampling frequency of a sampler connected to the pre-sampling device.