摘要:
Disclosed herein are an electrolyte solution composition and an energy storage device including the same. The electrolyte solution may include: a solvent including one or more compound selected from one or more cyclic carbonate compound; and additives including one or more selected from a group consisting of catechol carbonate (CC), fluoro ethylene carbonate (FEC), propane sulton (PS), and propene sulton (PST).
摘要:
Provided are a method of manufacturing a lithium ion capacitor and a lithium ion capacitor manufactured using the same. The method of manufacturing a lithium ion capacitor includes forming a lithium thin film on one surface of a separator; making the lithium thin film in contact with an anode, and alternately disposing the anode and a cathode with the separator interposed therebetween to form an electrode cell; and enclosing the electrode cell and an electrolyte into a housing, and pre-doping lithium ions to the anode from the lithium thin film.
摘要:
Disclosed herein are a method for pre-doping an anode and a lithium ion capacitor storage device including the same. The method of the present invention includes: disposing lithium metal films and anodes alternately; and charging the lithium metal films and the anodes to directly pre-dope lithium metal contained in the lithium metal films onto the anodes. The lithium ion capacitor storage device is manufactured by the method. According to the present invention, the lithium ion capacitor storage device including the anode can provide a high-capacitance capacitor capable of operating even at a high voltage range of up to 3.8V to 2.0V, and ensure high reliability even in a high-temperature (60° C.) cycle.
摘要:
There are provided an electrolyte for a lithium ion capacitor, and a lithium ion capacitor including the same. The electrolyte includes a lithium salt having divalent anions. The lithium ion capacitor including the electrolyte may have high capacitance and stability, even at high temperatures.
摘要:
A cathode active material, a method for preparing the same, and a lithium ion capacitor including the same. The cathode active material has a surface with a porous structure and an inside with an amorphous structure where crystalline phases are not present. The cathode active material according to the present invention has the inside having an amorphous structure where crystal lattices are not contained in a short range order, thereby preventing the lithium ions from being intercalated into the inside of the cathode active material while the anode is pre-doped. The lithium ion capacitor containing the cathode active material having the above structure can maintain a potential difference between the cathode and the anode constantly, thereby obtaining high withstand voltage, high energy density, and high input and output characteristics. Furthermore, a large-capacitance lithium ion capacitor device having excellent reliability of high-speed charging and discharging cycle can be manufactured.
摘要:
Provided is an anode structure of an energy storage device such as a lithium ion capacitor. The anode structure includes a current collector and an active material layer formed on the current collector, and the active material layer includes an active material, a conductive material for providing conductivity to the active material layer, and graphite surface-coated with amorphous carbon.
摘要:
An electrode active material having a partially crystalline structure in a fine area (short range), a method for preparing the same, and an electrochemical capacitor including the same. The electrode active material having a partially crystalline structure in a fine area (short range) can be prepared by performing heat treatment at a proper temperature. In a case where the electrode active material is used for an electrode of an electrochemical capacitor, the pores as well as the partially crystalline structure, of the electrode active material, can contribute to capacitance, and thus, energy density of the electrochemical capacitor can be significantly improved.
摘要:
Disclosed are an electrode for a low-resistance energy storage device, a method of manufacturing the same, and an energy storage device using the same. In detail, the electrode for an energy storage device is manufactured by forming electrode materials on a metal layer having a dendrite formed thereon. The energy storage device using the electrode for an energy storage device has low resistance characteristics.
摘要:
Disclosed herein is a lithium ion capacitor, including: a positive electrode including a positive electrode activated material; a negative electrode including a negative electrode activated material; and an electrolyte disposed between the positive and negative electrodes, wherein the positive electrode activated material includes a mixture of lithium iron phosphate (LiFePO4) and activated carbon, thereby having improved energy density and capacitance and a long life span.
摘要:
Disclosed herein are an electrolyte solution composition and an energy storage device including the same. The electrolyte solution composition contains: a lithium salt including lithium ions; and a solvent made of a material selected from a group consisting of at least one cyclic carbonate compound. The electrolyte solution composition may balancedly maintain characteristics at a room temperature and a high temperature and be used for pre-doping lithium ions, thereby making it possible to improve pre-doping efficiency.