摘要:
Embodiments for bandwidth allocation methods, detecting interference with other systems, and/or redeploying in alternate bandwidth are described. Higher bandwidth channels may be deployed at channel boundaries, which are a subset of those for lower bandwidth channels, and may be restricted from overlapping. Interference may be detected on primary, secondary, or a combination of channels, and may be detected in response to energy measurements of the various channels. When interference is detected, a higher bandwidth Basic Service Set (BSS) may be relocated to an alternate channel, or may have its bandwidth reduced to avoid interference. Interference may be detected based on energy measured on the primary or secondary channel, and/or a difference between the two. An FFT may be used in energy measurement in either or both of the primary and secondary channels. Stations may also monitor messages from alternate systems to make channel allocation decisions. Various other aspects are also presented.
摘要:
Embodiments describe methods, systems, and devices that utilize positional information to determine location of other device and/or to provide a location-based message. A method can include receiving a location information of a mobile device and using an access point to transmit location information to one or more other devices that do not include location functionality that are in communication with the mobile device. The method can further include transmitting a message to the mobile device based at least in part on the received access location information. In another embodiment, the method can include receiving a user preference data from the mobile device or one or more other devices and transmitting a communication to the mobile device or one or more other devices that conforms to the user preference data.
摘要:
Techniques for performing open-loop rate control in a TDD communication system are described. The channel quality of a first link is estimated based on a transmission received via the first link. The channel quality of a second link is estimated based on the estimated channel quality of the first link and an asymmetric parameter. At least one rate for a data transmission via the second link is selected based on the estimated channel quality of the second link. The estimated channel quality for each link may be given by a set of SNR estimates for a set of transmission channels on that link. The asymmetric parameter may be determined based on (1) the capabilities (e.g., transmit power, receiver noise figure, and number of antennas) of the transmitting and receiving stations or (2) received SNRs for the first and second links.
摘要:
Embodiments describe registration in a wireless communication system. A method includes wirelessly transmitting over a WWAN a first registration message from a mobile device, wirelessly transmitting through the WWAN a second registration message to a WLAN access point and receiving at the mobile device access through the WLAN access point. According to another embodiment is a method for constructing a self-configuring ad-hoc network. The method can include receiving a GPS coordinate from a WWAN channel node at a management system and creating an initial topography based at least in part on the GPS coordinate to achieve a network connectivity with diverse routes between a plurality of nodes.
摘要:
Embodiments describe utilizing time-based information to improve communication in a wireless network. A method can include receiving beacon information from at least one access point and utilizing time-stamp information associated with the beacon information to determine whether to hand off communication with a second access point. According to other embodiments the method can further include detecting beacon quality is below a threshold level and transmitting a poor beacon quality message. Information relating to a plurality of alternate access points can be received in response to the transmitted poor beacon quality message.
摘要:
A wireless communication method, apparatus, and system for simultaneous communication of a wide area network with a wireless local area network. The system having the wide area network configured to transmit control signals, the wireless local area network configured to transmit data signals, and a mobile station configured to receive control signals from the wide area network and data signals from the wireless local area network.
摘要:
Techniques for MAC processing for efficient use of high throughput systems that may be backward compatible with various types of legacy systems are disclosed. In one aspect, a data frame is formed comprising a common portion for transmission in a format receivable by various stations, such as access points and remote stations. The data frame also comprises a dedicated portion, formatted for transmission to a specified remote station. In another aspect, the common portion is unsteered, and the dedicated portion is steered. In another aspect, an access point schedules an allocation in response to a data indication included in a common portion of a data frame transmitted from one remote station to another. In another aspect, a first station transmits a reference to a second station, which measures the reference and generates feedback therefrom.
摘要:
An ad hoc network with distributed hierarchical scheduling is disclosed. In one aspect, stations in a network mesh detect interfering neighbor stations and form interference lists. Stations transmit their interference lists. Scheduling stations schedule allocations for child stations in response to interference lists, received remote allocations, or a combination thereof. Coordination messages are transmitted including frame structure, allocations, and interference lists, among others. In another aspect, an ad hoc mesh network may be organized into a tree topology. In an example wireless backhaul network, this matches traffic flow. Distributed, hierarchical scheduling is provided where parents schedule communication with children while respecting already scheduled transmissions to/from interferers and to/from interferers of their respective children. Procedures to construct interference constraints for distributed, hierarchical scheduling are described, resulting in efficient scheduling and reuse in an ad hoc wireless network, without centralized scheduling. Various other aspects are also disclosed.
摘要:
Embodiments disclosed herein for MAC processing for efficient use of high throughput systems and that may be backward compatible with various types of legacy systems. In one aspect, a data transmission structure comprises a consolidated poll and one or more frames transmitted in accordance with the consolidated poll. In another aspect, a Time Division Duplexing (TDD) data transmission structure comprises a pilot, a consolidated poll, and zero or more access point to remote station frames in accordance with the consolidated poll. In one aspect, frames are transmitted sequentially with no or substantially reduced interframe spacing. In another aspect, a guard interframe spacing may be introduced between frames transmitted from different sources, or with substantially different power levels. In another aspect, a single preamble is transmitted in association with one or more frames. In another aspect, a block acknowledgement is transmitted subsequent to the transmission of one or more sequential frames.
摘要:
An IBSS that allows token passing for round-robin service of QoS flows is disclosed (an RRBSS). The RRBSS permits low-latency, reduced contention, distributed scheduling useful in any ad hoc network, but particularly suitable for high data rates. Distributed scheduled access is provided for flows through a round-robin token passing service discipline. STAs follow a round-robin order, or list, and are able to communicate with round-robin transmit opportunities during a defined period. Each STA in the list transmits a respective token to transfer access to the shared medium to the next STA in the RR List. The sequence is terminated with an end token. STAs maintain station identifiers and list updates are maintained with a sequence identifier. Techniques are disclosed to add and remove STAs to the sequence;s establish connectivity lists (receive and forward), and maintain other sequence parameters such as bandwidth management and TXOP duration. Various other aspects are also disclosed.