摘要:
An output of a knock sensor is A/D converted in a specified knock determination range. In a time-frequency analysis part, data of frequency, time, and vibration intensity are extracted at the same time from the knock sensor output signal and the time-varying patterns of vibration intensities in multiple frequency ranges are extracted. An edge direction and an edge intensity are computed by an edge extraction processing. A correlation value expressing a correlation between time-varying patterns of vibration intensities in multiple frequency ranges and a reference model expressing the feature of knock is computed in a mutual correlation/knock determination part. The correlation value is compared with a determination threshold. When the correlation value is larger than the determination threshold, it is determined that knock is caused. When the correlation value is not larger than the determination threshold, it is determined that knock is not caused.
摘要:
An output signal of a knock sensor is converted by an A/D conversion part in a specified knock determination range. In a time-frequency analysis part, data of frequency, time, and vibration intensity are extracted at the same time from an output signal of the knock sensor, and the time-varying patterns of vibration intensities in multiple frequency ranges are extracted. A knock determination part computes the number of time-varying patterns of vibration intensity which rise at same time. The knock determination part executes a knock determination based on whether the number of the time-varying patterns of vibration intensity is greater than a knock determination threshold.
摘要:
An output signal of a knock sensor is converted by an A/D conversion part in a specified knock determination range. In a time-frequency analysis part, data of frequency, time, and vibration intensity are extracted at the same time from an output signal of the knock sensor, and the time-varying patterns of vibration intensities in multiple frequency ranges are extracted. A knock determination part computes the number of time-varying patterns of vibration intensity which rise at same time. The knock determination part executes a knock determination based on whether the number of the time-varying patterns of vibration intensity is greater than a knock determination threshold.
摘要:
An output signal of a knock sensor is converted by an A/D conversion part in a specified knock determination range. In a time-frequency analysis part, data of frequency, time, and vibration intensity are extracted at the same time from an output signal of the knock sensor and the time-varying patterns of vibration intensities in multiple frequency ranges are extracted. A knock determination part computes lengths (crank angle, or time period) from a starting point to a latest terminating point of the time-varying patterns of vibration intensity in at least two frequency ranges, which rise at a same time. The knock determination part executes a knock determination based on whether the lengths are greater than a knock determination threshold.
摘要:
An output of a knock sensor is A/D converted in a specified knock determination range. In a time-frequency analysis part, data of frequency, time, and vibration intensity are extracted at the same time from the knock sensor output signal and the time-varying patterns of vibration intensities in multiple frequency ranges are extracted. An edge direction and an edge intensity are computed by an edge extraction processing. A correlation value expressing a correlation between time-varying patterns of vibration intensities in multiple frequency ranges and a reference model expressing the feature of knock is computed in a mutual correlation/knock determination part. The correlation value is compared with a determination threshold. When the correlation value is larger than the determination threshold, it is determined that knock is caused. When the correlation value is not larger than the determination threshold, it is determined that knock is not caused.
摘要:
A knock sensor signal is converted by an A/D conversion part in a specified knock determination range. In a time-frequency analysis part, data of frequency, time, and vibration intensity are extracted at the same time from an output signal of the knock sensor and the time-varying patterns of vibration intensity of multiple frequency ranges are extracted. Contours of the time-varying patterns of vibration intensity in multiple frequency ranges are extracted. Vectors indicating directions along which the vibration intensities vary are approximated by the contour of the time-varying pattern of vibration intensity in each frequency range according to the least-squares method. A knock determination is executed based on whether directions of any two or more of multiple vectors are within a predetermined range. Alternatively, a knock determination is executed based on whether a ratio of length of any two or more of the vectors is within a predetermined range.
摘要:
An engine ECU executes: calculating 15-degrees integrated value integrating vibration intensity for each of six crank angle ranges; detecting an amount of change in the 15-degrees integrated value between ignition cycles; specifying two ranges having larger amounts of change; specifying a crank angle having intensity larger than that of a neighboring crank angle in a search range determined to be the same as the specified ranges; calculating a coefficient of correlation K corresponding to a difference between a vibration waveform and a knock waveform model while the specified crank angle is matched with a timing at which intensity peaks in the knock waveform model; and, if the coefficient of correlation K is larger than a threshold value K(0), determining that knock has occurred.
摘要:
An engine ECU executes: calculating 15-degrees integrated value integrating vibration intensity for each of six crank angle ranges; detecting an amount of change in the 15-degrees integrated value between ignition cycles; specifying two ranges having larger amounts of change; specifying a crank angle having intensity larger than that of a neighboring crank angle in a search range determined to be the same as the specified ranges; calculating a coefficient of correlation K corresponding to a difference between a vibration waveform and a knock waveform model while the specified crank angle is matched with a timing at which intensity peaks in the knock waveform model; and, if the coefficient of correlation K is larger than a threshold value K(0), determining that knock has occurred.
摘要:
Provided are an inkjet printing apparatus and inkjet printing method that can, regardless of an ejection frequency of a print head, stabilize density of an image expressed on a print medium. For this purpose, an ink concentration integrated value is obtained according to the ejection history of each nozzle so as to be increased by data indicating non-ejection of the nozzle or decreased by data indicating ejection. Then, image data on the target pixel is corrected such that density of the target pixel is further reduced as the pixel is subjected to printing by a nozzle having a higher ink concentration integrated value.
摘要:
An electronic device including a first ground conductor layer positioned at an underside of a first insulation layer; a second ground conductor layer positioned at an upper side of the first insulation layer; a second insulation layer positioned at an upper side of the second ground conductor layer; a first connection pattern formed on an inside wall of a first opening penetrating the first insulation layer and the second insulation layer and interconnecting the first ground conductor layer and the second ground conductor layer; a conductive member provided in the first opening and connected to the first ground conductor layer; and an electronic element mounted on the member and grounded to the member.