Abstract:
An endoscope 100 includes a first light source 45 that emits white illumination light, a second light source 47 that emits narrow-band light and an imaging section that has an imaging device 21 having plural detection pixels and images a region to be observed. The imaging section is caused to output a captured image signal including both a return light component of the white illumination light from the region to be observed by and a return light component of the narrow-band light the white illumination light. From the captured image signal, the return light component of the narrow-band light is selectively extracted, and a brightness level of the extracted return light component of the narrow-band light is changed by changing a light amount of light emitted from the second light source 47.
Abstract:
An endoscope 100 includes a first light source 45 that emits white illumination light, a second light source 47 that emits narrow-band light and an imaging section that has an imaging device 21 having plural detection pixels and images a region to be observed. The imaging section is caused to output a captured image signal including both a return light component of the white illumination light from the region to be observed by and a return light component of the narrow-band light the white illumination light. From the captured image signal, the return light component of the narrow-band light is selectively extracted, and a brightness level of the extracted return light component of the narrow-band light is changed by changing a light amount of light emitted from the second light source 47.
Abstract:
An endoscope 100 includes a first light source 45 that emits white illumination light, a second light source 47 that emits narrow-band light and an imaging section that has an imaging device 21 having plural detection pixels and images a region to be observed. The imaging section is caused to output a captured image signal including both a return light component of the white illumination light from the region to be observed by and a return light component of the narrow-band light the white illumination light. From the captured image signal, the return light component of the narrow-band light is selectively extracted, and a brightness level of the extracted return light component of the narrow-band light is changed by changing a light amount of light emitted from the second light source 47.
Abstract:
An endoscope 100 includes a first light source 45 that emits white illumination light, a second light source 47 that emits narrow-band light and an imaging section that has an imaging device 21 having plural detection pixels and images a region to be observed. The imaging section is caused to output a captured image signal including both a return light component of the white illumination light from the region to be observed by and a return light component of the narrow-band light the white illumination light. From the captured image signal, the return light component of the narrow-band light is selectively extracted, and a brightness level of the extracted return light component of the narrow-band light is changed by changing a light amount of light emitted from the second light source 47.
Abstract:
An endoscope system includes an endoscope and a control device. The endoscope includes an illumination optical system with a fluorescent body formed in an optical path and an imaging optical system with an imaging element outputting an imaging signal of an optical image. The control device includes a light source unit which supplies an excitation light to the illumination optical system so as to emit light from the fluorescent body and an image processing section which corrects the imaging signal output from the imaging element. The image processing section includes: an illumination light spectrum calculating unit, a chromaticity correction table creating unit and an image correcting unit.
Abstract:
An endoscope 100 includes a first light source 45 that emits white illumination light, a second light source 47 that emits narrow-band light and an imaging section that has an imaging device 21 having plural detection pixels and images a region to be observed. The imaging section is caused to output a captured image signal including both a return light component of the white illumination light from the region to be observed by and a return light component of the narrow-band light the white illumination light. From the captured image signal, the return light component of the narrow-band light is selectively extracted, and a brightness level of the extracted return light component of the narrow-band light is changed by changing a light amount of light emitted from the second light source 47.
Abstract:
An endoscope system includes an endoscope and a control device. The endoscope includes an illumination optical system with a fluorescent body formed in an optical path and an imaging optical system with an imaging element outputting an imaging signal of an optical image. The control device includes a light source unit which supplies an excitation light to the illumination optical system so as to emit light from the fluorescent body and an image processing section which corrects the imaging signal output from the imaging element. The image processing section includes: an illumination light spectrum calculating unit, a chromaticity correction table creating unit and an image correcting unit.
Abstract:
An electronic endoscope includes an illumination unit, an imaging unit and an image generating unit. The illumination unit switches among plural light beams having different spectra so as to illuminate a subject. The light beams include white light and excitation light for exciting the subject to produce fluorescence. The imaging unit includes a solid-state imaging device, and an objective optical system. The objective optical system guides, to the solid-state imaging device, light returning from the subject which the illumination unit illuminates. The image generating unit generates image data based on image signals output from the imaging unit. The solid-state imaging device further includes a sensitivity adjusting unit that only lowers sensitivity, to the excitation light, of pixels which are sensitive to the fluorescence among a plurality of pixels of the solid-state imaging device. The light guided by the objective optical system is incident directly onto the solid-state imaging device.
Abstract:
An electronic endoscope system includes an electronic endoscope having a CMOS image sensor on the tip of an insertion section, a light source device for illuminating the interior of a patient's body, and a processing device for reading out image signals from the CMOS image sensor. The electronic endoscope system can operate with a standard imaging mode and a special imaging mode. When the time taken to read out the image signals from all the pixels in the standard mode is defined as T, the light source device in the special imaging mode emits illumination light in every first half period T/2 while switching a wavelength of the illumination light between two different wavebands. In every second half period T/2, the processing device reads out the image signals from the half of the pixels.
Abstract:
An apparatus for producing a hard copy of a color picture includes a cathode ray tube for displaying a picture component on a screen thereof upon reception of a video signal which is associated with a separated-color component, and a recorder which includes a plurality of separated-color filters to expose a recording medium to the picture component being displayed on the screen through any of the filters. The recorder exposes the recording medium to picture components of individual separated colors by additive color photography to record a color picture. A photodetector is provided for measuring brightness of the screen through any one of the filters while a controller controls the cathode ray tube and the photodetector. The controller, before recording the picture components of the individual separated-color components on the recording medium, adjust at least one of luminance and contrast of the tube and an exposure time of the recording medium, based on the brightness measured.