摘要:
This invention provides a catalyst for a fuel cell electrode, a process for producing a catalyst for a fuel cell electrode, a membrane electrode assembly, and a fuel cell, which are advantageous in suppressing aggregation of a carbon support such as carbon nanotubes, and in closely contacting the three of the carbon support, a catalyst component and an electrolyte component with each other. A catalyst for a fuel cell electrode contains a carbon support (e.g., CNTs) having a pi-conjugated system, an electrolyte component having an aromatic ring, and a catalyst component. A process for producing a catalyst for a fuel cell electrode. By contacting, in a solvent, a carbon support (e.g., CNTs) having a pi-conjugated system, an electrolyte component having an aromatic ring, and a catalyst component with each other, the carbon support can be modified with the electrolyte component and loaded with the catalyst component.
摘要:
Disclosed is a method for detaching cultured cells that can selectively detach cultured adhered cells. The scaffold to which the cells adhere is configured from at least a cell adhesion factor containing carbon nanotubes, and by means of radiating laser light in a spot shape on the scaffold in a region where cells are adhered, a shock wave is generated by the heat arising by means of the photothermal conversion of the carbon nanotubes, and by means of this shock wave, the cells are caused to be in a non-adhered state.
摘要:
Disclosed is a method for detaching cultured cells that can selectively detach cultured adhered cells. The scaffold to which the cells adhere is configured from at least a cell adhesion factor containing carbon nanotubes, and by means of radiating laser light in a spot shape on the scaffold in a region where cells are adhered, a shock wave is generated by the heat arising by means of the photothermal conversion of the carbon nanotubes, and by means of this shock wave, the cells are caused to be in a non-adhered state.
摘要:
A hyperbranched polymer containing, for example, a triarylamine structure represented by the formulae (10) to (13) below as a repeating unit, and having a weight average molecular weight of 750 to 4,000,000 is excellent in dissolving ability to carbon nanotubes. Consequently, by using such a hyperbranched polymer as a solubilizer, there can be obtained a composition wherein isolated carbon nanotubes are dissolved.