摘要:
Disclosed is a method for detaching cultured cells that can selectively detach cultured adhered cells. The scaffold to which the cells adhere is configured from at least a cell adhesion factor containing carbon nanotubes, and by means of radiating laser light in a spot shape on the scaffold in a region where cells are adhered, a shock wave is generated by the heat arising by means of the photothermal conversion of the carbon nanotubes, and by means of this shock wave, the cells are caused to be in a non-adhered state.
摘要:
A method for manufacturing metal nanorods includes: a step of adding a reducing agent to a metallic salt solution; a step of radiating light into the metallic salt solution containing the reducing agent; and a step of leaving the light-radiated metallic salt solution containing the reducing agent stationary in a dark place so as to grow metal nanorods. Metal nanorods can be also grown by forming a mixed solution by fractionating the above light-radiated metallic salt solution and mixing the fractionated metallic salt solution into a non-radiated metallic salt solution containing the reducing agent, or mixing a non-radiated metallic salt solution and the reducing agent into the above light-radiated metallic salt solution; and leaving the mixed solution stationary in a dark place so as to grow metal nanorods.
摘要:
A method for manufacturing metal nanorods includes: a step of adding a reducing agent to a metallic salt solution; a step of radiating light into the metallic salt solution containing the reducing agent; and a step of leaving the light-radiated metallic salt solution containing the reducing agent stationary in a dark place so as to grow metal nanorods. Metal nanorods can be also grown by forming a mixed solution by fractionating the above light-radiated metallic salt solution and mixing the fractionated metallic salt solution into a non-radiated metallic salt solution containing the reducing agent, or mixing a non-radiated metallic salt solution and the reducing agent into the above light-radiated metallic salt solution; and leaving the mixed solution stationary in a dark place so as to grow metal nanorods.
摘要:
The present invention provides metal fine particles which have selective wavelength absorption characteristics in a wavelength region from visible light to near infrared light, and have sharp absorption characteristics, and influences little the surrounding wavelength, and therefore, they yield tones having high chroma. The present invention provides metal fine particles wherein an aspect ratio is in a range from 1.1 to 8.0, a maximum absorption wavelength in plasmon absorption is in a range from 400 nm to 1,200 nm, and an absorption coefficient at a peak position of the maximum absorption wavelength is in a range from 6,000 to 20,000 L/mol·cm (measurement concentration: 1.6×10−4 mol/L, and solvent:water).
摘要:
A method for manufacturing metal nanorods includes: a step of adding a reducing agent to a metallic salt solution; a step of radiating light into the metallic salt solution containing the reducing agent; and a step of leaving the light-radiated metallic salt solution containing the reducing agent stationary in a dark place so as to grow metal nanorods. Metal nanorods can be also grown by forming a mixed solution by fractionating the above light-radiated metallic salt solution and mixing the fractionated metallic salt solution into a non-radiated metallic salt solution containing the reducing agent, or mixing a non-radiated metallic salt solution and the reducing agent into the above light-radiated metallic salt solution; and leaving the mixed solution stationary in a dark place so as to grow metal nanorods.
摘要:
A method for forming a fine structure of metal fine particles includes a step [FIG. 1(a)] of substituting a part of metal fine particles stabilized by a dispersion stabilizer desorbed when irradiated with an electromagnetic wave of high energy and/or high energy density and a dispersing agent from the surface of the metal fine particles when irradiated with an electromagnetic wave of a lower energy and/or a lower energy density and/or a compound having no bonding ability to the metal fine particles so as to prepare a colloidal solution of the metal fine particles, irradiating the colloidal solution with the electromagnetic wave of high energy and/or high energy density, and thereby improve the photosensitivity of the metal fine particles dispersed solution, and a step [FIG. 1(b)] of irradiating the metal fine particles dispersed solution having the improved photosensitivity with an electromagnetic wave of a lower energy and/or a lower energy density, and fixing the metal fine particles to a desired fine structure corresponding to the irradiation with the electromagnetic wave of the lower energy and/or the lower energy density on the surface of a substrate.
摘要:
A method for manufacturing metal nanorods includes: a step of adding a reducing agent to a metallic salt solution; a step of radiating light into the metallic salt solution containing the reducing agent; and a step of leaving the light-radiated metallic salt solution containing the reducing agent stationary in a dark place so as to grow metal nanorods. Metal nanorods can be also grown by forming a mixed solution by fractionating the above light-radiated metallic salt solution and mixing the fractionated metallic salt solution into a non-radiated metallic salt solution containing the reducing agent, or mixing a non-radiated metallic salt solution and the reducing agent into the above light-radiated metallic salt solution; and leaving the mixed solution stationary in a dark place so as to grow metal nanorods.
摘要:
Disclosed is a method for detaching cultured cells that can selectively detach cultured adhered cells. The scaffold to which the cells adhere is configured from at least a cell adhesion factor containing carbon nanotubes, and by means of radiating laser light in a spot shape on the scaffold in a region where cells are adhered, a shock wave is generated by the heat arising by means of the photothermal conversion of the carbon nanotubes, and by means of this shock wave, the cells are caused to be in a non-adhered state.
摘要:
The present invention provides metal fine particles which have selective wavelength absorption characteristics in a wavelength region from visible light to near infrared light, and have sharp absorption characteristics, and influences little the surrounding wavelength, and therefore, they yield tones having high chroma. The present invention provides metal fine particles wherein an aspect ratio is in a range from 1.1 to 8.0, a maximum absorption wavelength in plasmon absorption is in a range from 400 nm to 1,200 nm, and an absorption coefficient at a peak position of the maximum absorption wavelength is in a range from 6,000 to 20,000 L/mol·cm (measurement concentration: 1.6×10−4 mol/L, and solvent: water).
摘要:
The present invention provides metal fine particles which have selective wavelength absorption characteristics in a wavelength region from visible light to near infrared light, and have sharp absorption characteristics, and influences little the surrounding wavelength, and therefore, they yield tones having high chroma. The present invention provides metal fine particles wherein an aspect ratio is in a range from 1.1 to 8.0, a maximum absorption wavelength in plasmon absorption is in a range from 400 nm to 1,200 nm, and an absorption coefficient at a peak position of the maximum absorption wavelength is in a range from 6,000 to 20,000 L/mol·cm (measurement concentration: 1.6×10−4 mol/L, and solvent: water).