Abstract:
Methods for determining separate velocity components of an acoustic wavefield that are incident on a distributed fiber optic sensor are disclosed. A fiber optic sensor includes fiber that is spatially distributed in non-parallel planes of a three-dimensional volume having three orthogonal axes. The fiber includes a first fiber pattern that is spatially distributed within a first plane of the three-dimensional volume, and a second fiber pattern that is spatially distributed within a second plane of the volume. The fiber patterns are interrogated separately by a distributed fiber optic interrogation system. The individual responses from each pattern are combined and processed to determine separate velocity components of the acoustic wavefield relative to the orthogonal axes of the three-dimensional volume.
Abstract:
Methods for determining separate velocity components of an acoustic wavefield that are incident on a distributed fiber optic sensor are disclosed. A fiber optic sensor includes fiber that is spatially distributed in non-parallel planes of a three-dimensional volume having three orthogonal axes. The fiber includes a first fiber pattern that is spatially distributed within a first plane of the three-dimensional volume, and a second fiber pattern that is spatially distributed within a second plane of the volume. The fiber patterns are interrogated separately by a distributed fiber optic interrogation system. The individual responses from each pattern are combined and processed to determine separate velocity components of the acoustic wavefield relative to the orthogonal axes of the three-dimensional volume.
Abstract:
Techniques are disclosed that facilitate use of a distributed vibration sensing system for collecting data in a well application to provide improved collection of strain related data, such as for a seismic survey. The techniques facilitate selection of a variable optimal gauge length that optimally preserves the signal bandwidth and temporal resolution of the sensing system and that can be tuned using the actual apparent velocity and maximum recoverable frequency of the monitored parameters. Techniques for real-time processing of DVS data using a preliminary variable optimal gauge length are disclosed, as well as techniques for re-processing the DVS data at a later time using an updated variable optimal gauge length that is derived from the preliminary processing of the DVS data.
Abstract:
An apparatus and method for correcting the wavenumber sensitivity of a distributed fiber optic sensor are disclosed. The distributed fiber optic sensor is deployed in a region of interest to measure a characteristic of an incident acoustic wavefield. A composite response of the distributed sensor is determined based on backscatter optical signals generated by the sensor, where the composite response is indicative of a characteristic of an incident acoustic wavefield. The composite response includes at least a first response having a first wavenumber sensitivity and a second response having a second wavenumber sensitivity. The second wavenumber sensitivity is selected so that wavenumber notches of the first and second responses do not overlap.
Abstract:
An apparatus and method for correcting the wavenumber sensitivity of a distributed fiber optic sensor are disclosed. The distributed fiber optic sensor is deployed in a region of interest to measure a characteristic of an incident acoustic wavefield. A composite response of the distributed sensor is determined based on backscatter optical signals generated by the sensor, where the composite response is indicative of a characteristic of an incident acoustic wavefield. The composite response includes at least a first response having a first wavenumber sensitivity and a second response having a second wavenumber sensitivity. The second wavenumber sensitivity is selected so that wavenumber notches of the first and second responses do not overlap.
Abstract:
Apparatus and a method for monitoring of a pipe inspection tool in a pipeline, the apparatus comprising at least one sensor carrier apparatus being locatable along and in close proximity to a pipeline, a plurality of acoustic sensors being locatable on the sensor carrier apparatus, a pipeline inspection tool which is moveable through the pipeline being detectable by means of the acoustic sensors, and the location of the pipeline inspection tool being able to be determined by means of the acoustic sensors.
Abstract:
A distributed measurement system includes a first distributed optical sensing fiber deployed along a first desired measurement path and a second distributed optical sensing fiber deployed along a second desired measurement path. The system further includes an interrogation system coupled to the first distributed optical sensing fiber and to the second distributed optical sensing fiber. The system also includes a first distributed measuring instrument launch a first interrogating probe pulse set comprising a first pulse having a first frequency and a second pulse having a second frequency. The interrogation system is designed to direct the first pulse to the first distributed optical sensing fiber and the second pulse to the second distributed optical sensing fiber.
Abstract:
A technique facilitates the use and application of a distributed vibration sensing system in, for example, a well application. The technique enables selection of a desired gauge length to achieve an optimum trade-off between the spatial resolution of a distributed vibration sensing/distributed acoustic sensing system and signal-to-noise ratio. The optimum gauge length can vary according to specific factors, e.g. depth within a well, and the present technique can be used to account for such factors in selecting an optimal gauge length which facilitates accurate collection of data on dynamic strain.
Abstract:
A system and method for simultaneously addressing multiple parallel distributed fiber optic sensors using a single interrogation instrument is disclosed. One or more of the fiber optic sensors are provided with a non-reflective delay element to prevent an overlap in time between backscatter returns from the distributed fiber optic sensors, thereby allowing the backscatter returns from each sensor to be distinguished based on round-trip transit time.
Abstract:
A distributed measurement system includes a first distributed optical sensing fiber deployed along a first desired measurement path and a second distributed optical sensing fiber deployed along a second desired measurement path. The system further includes an interrogation system coupled to the first distributed optical sensing fiber and to the second distributed optical sensing fiber. The system also includes a first distributed measuring instrument launch a first interrogating probe pulse set comprising a first pulse having a first frequency and a second pulse having a second frequency. The interrogation system is designed to direct the first pulse to the first distributed optical sensing fiber and the second pulse to the second distributed optical sensing fiber.