Abstract:
A system and method for imaging properties of subterranean formations in a wellbore is provided. The system comprises a formation sensor for collecting currents injected into the subterranean formations, the formation sensor positionable on a downhole tool deployable into the wellbore. The system comprises a controller for controlling the formation sensor and a formation imaging unit. The formation imaging unit comprises a current management unit for collecting data from the currents injected into the subterranean formations, the currents having at least two different frequencies. The formation imaging unit comprises a drilling mud data unit for determining at least one drilling mud parameter, a formation data unit for determining at least one formation parameter from the collected data, and an inversion unit for determining at least one formation property by inverting the at least one formation parameter.
Abstract:
Systems, methods, and apparatuses to generate a formation model are described. In one aspect, a logging system includes a transmitter to produce an electromagnetic field in a borehole, a receiver in the borehole to detect a first field signal induced by the electromagnetic field at a first depth of investigation and a second field signal induced by the electromagnetic field at a second depth of investigation, and a modeling unit to perform a first one-dimensional inversion on the first field signal and a second one-dimensional inversion on the second field signal, build a two-dimensional model from the first one-dimensional inversion and the second one-dimensional inversion, and perform a two-dimensional inversion on the two-dimensional model to generate a two-dimensional formation model.
Abstract:
A system and method for imaging properties of subterranean formations in a wellbore is provided. The system comprises a formation sensor for collecting currents injected into the subterranean formations, the formation sensor positionable on a downhole tool deployable into the wellbore. The system comprises a controller for controlling the formation sensor and a formation imaging unit. The formation imaging unit comprises a current management unit for collecting data from the currents injected into the subterranean formations, the currents having at least two different frequencies. The formation imaging unit comprises a drilling mud data unit for determining at least one drilling mud parameter, a formation data unit for determining at least one formation parameter from the collected data, and an inversion unit for determining at least one formation property by inverting the at least one formation parameter.
Abstract:
A system and method for imaging properties of subterranean formations in a wellbore is provided. The system comprises a formation sensor for collecting currents injected into the subterranean formations, the formation sensor positionable on a downhole tool deployable into the wellbore. The system comprises a controller for controlling the formation sensor and a formation imaging unit. The formation imaging unit comprises a current management unit for collecting data from the currents injected into the subterranean formations, the currents having at least two different frequencies. The formation imaging unit comprises a drilling mud data unit for determining at least one drilling mud parameter, a formation data unit for determining at least one formation parameter from the collected data, and an inversion unit for determining at least one formation property by inverting the at least one formation parameter.
Abstract:
Systems, methods, and apparatuses to generate a formation model are described. In one aspect, a logging system includes a transmitter to produce an electromagnetic field in a borehole, a receiver in the borehole to detect a first field signal induced by the electromagnetic field at a first depth of investigation and a second field signal induced by the electromagnetic field at a second depth of investigation, and a modeling unit to perform a first one-dimensional inversion on the first field signal and a second one-dimensional inversion on the second field signal, build a two-dimensional model from the first one-dimensional inversion and the second one-dimensional inversion, and perform a two-dimensional inversion on the two-dimensional model to generate a two-dimensional formation model.
Abstract:
A ranging workflow to interpret the ultradeep harmonic anisotropic attenuation (UHAA) measurements and estimate the distance and orientation of the existing cased well from the well being drilled is presented herein. The ranging workflow applies to scenarios in which the wells are near parallel to each other and performs reasonably well in boreholes which are more or less perpendicular to the formation layers. The ranging workflow generally includes deploying a deep directional resistivity (DDR) tool into a new wellbore; collecting UHAA data via the DDR tool; determining resistivity values based at least in part on the UHAA data; and determining a distance of the DDR tool from a casing of an existing wellbore proximate the new wellbore based at least in part on the resistivity values and a UHAA response table for the DDR tool.
Abstract:
Embodiments of the present disclosure are directed towards a method for obtaining and analyzing flux leakage data. Embodiments may include measuring, using a magnetic flux leakage tool, magnetic flux leakage data from a casing and determining sensor liftoff data from the flux leakage data. Embodiments may also include performing outward analytic continuation of the magnetic flux leakage data from a sensor plane to one or more additional planes and extrapolating back from the one or more additional planes to a surface. Embodiments may include applying a model-based parametric inversion to the magnetic field flux leakage data and determining, based upon, at least in part, the model-based parametric inversion, a shape and size of a corresponding corroded area associated with the casing.
Abstract:
Methods for determining oil-water contact positions and water zone resistivities are provided. In one example, the method may involve performing a 1D inversion on data collected by a resistivity logging tool. Further, the method may involve scanning a resistivity profile of a reservoir generated by the 1D inversion for a boundary position below the resistivity logging tool. Furthermore, the method may involve applying a local residual weighted average on the boundary position to generate an initial estimation of an oil-water contact position and inverting the initial estimation of the oil-water contact to generate water zone resistivity and a modified oil-water contact position. Additionally, the method may involve running a smoothing local post-processing operation to generate a layered model and performing a 2D inversion on the layered model.
Abstract:
Methods for determining oil-water contact positions and water zone resistivities are provided. In one example, the method may involve performing a 1D inversion on data collected by a resistivity logging tool. Further, the method may involve scanning a resistivity profile of a reservoir generated by the 1D inversion for a boundary position below the resistivity logging tool. Furthermore, the method may involve applying a local residual weighted average on the boundary position to generate an initial estimation of an oil-water contact position and inverting the initial estimation of the oil-water contact to generate water zone resistivity and a modified oil-water contact position. Additionally, the method may involve miming a smoothing local post-processing operation to generate a layered model and performing a 2D inversion on the layered model.
Abstract:
In one embodiment, a method includes receiving, via a processor, data from a plurality of imaging buttons disposed on a downhole tool within a borehole, generating, via the processor, a resistivity image, a permittivity image, a standoff curve, a rugosity index curve, a high-resolution image of a relationship between resistivity and permittivity of a section of a geological formation measured by the downhole tool, or some combination thereof based on the data, characterizing, via the processor, one or more vugs, one or more fractures, or some combination thereof based at least on the resistivity image, the permittivity image, the standoff curve, the rugosity index curve, the high-resolution image of the relationship between resistivity and permittivity, or some combination thereof, and identifying, via the processor, one or more rock types based at least on the high-resolution image of the relationship between resistivity and permittivity.