Abstract:
A method, computer program product, and computing system are provided for defining one or more injector completions and one or more producer completions in one or more reservoir models. One or more edges between the one or more injector completions and the one or more producer completions in the one or more reservoir models may be defined. The one or more edges between the one or more injector completions and the one or more producer completions may define a graph network representative of the one or more reservoir models. The one or more reservoir models may be simulated along the one or more edges between the one or more injector completions and the one or more producer completions.
Abstract:
Process for determining rock permeability. In some embodiments, the process can include determining a volume-based aspect ratio distribution of pores in a rock sample from a digital image of the sample, grouping the volume-based aspect ratio distribution into two or more pore types, selecting an initial pore type from the two or more pore types, obtaining mercury injection capillary pressure (MICP) data of the sample, creating a volume forward model and a frequency forward model using the MICP data, deriving an initial volume-based pore size distribution and an initial frequency-based pore size distribution for the initial pore type using the volume and the frequency forward models, respectively, selecting either the initial volume-based or the initial frequency-based distribution based on the forward models, and optimizing the selected distribution using an inversion of the MICP data with combinations of two or more pore type distributions to create an optimized distribution.
Abstract:
Systems and methods are provided to obtain fracture parameters of a hydraulic fracturing operation using strain data obtained before a fracture hit. A system may include a strain sensor and processing circuitry. The strain sensor may be disposed downhole in a monitoring well and may obtain strain data while a fracture caused by a hydraulic fracturing operation propagates from a treatment well toward the monitoring well before a fracture hit occurs in the monitoring well. The processing circuitry may perform an inversion based on the strain data to estimate fracture parameters associated with the propagation of the fracture before the fracture hit.
Abstract:
A ranging workflow to interpret the ultradeep harmonic anisotropic attenuation (UHAA) measurements and estimate the distance and orientation of the existing cased well from the well being drilled is presented herein. The ranging workflow applies to scenarios in which the wells are near parallel to each other and performs reasonably well in boreholes which are more or less perpendicular to the formation layers. The ranging workflow generally includes deploying a deep directional resistivity (DDR) tool into a new wellbore; collecting UHAA data via the DDR tool; determining resistivity values based at least in part on the UHAA data; and determining a distance of the DDR tool from a casing of an existing wellbore proximate the new wellbore based at least in part on the resistivity values and a UHAA response table for the DDR tool.
Abstract:
Aspects provide for methods that successfully evaluates multiple compressional and shear arrival events received by a sonic logging tool to evaluate the presence of structures, such as shoulder beds, in downhole environments. In particular, the methods described herein enable automated determination of properties of laminated reservoir formations by, for example, enabling the automated determination of arrival times and slownesses of multiple compressional and shear arrival events received by a sonic logging tool.
Abstract:
Processes and systems for correlating well log data sets from well logging passes within a well bore. In some embodiments, a process for well log depth matching can include normalizing a first well log from a first logging pass obtained within a well bore and a second well log from a second logging pass obtained within the well bore, performing a pre-shift, performing feature picking to identify one or more features along the second well log, performing normalized cross-correlation based optimization between the first well log and the second well log to match the one or more features along the second well log to the same one or more features of the first well log and generating a shift table for depth shifting the one or more features of the second well log and the first well log.
Abstract:
Methods and related systems are described relating to an inversion approach for interpreting the geophysical electromagnetic data. The inversion can be constrained by using a multiphase fluid flow simulator (incorporating pressure data if available) which simulates the fluid flow process and calculates the spatial distribution of the water saturation and the salt concentration, which are in turn transformed into the formation conductivity using a resistivity-saturation formula. In this way, the inverted invasion profile is consistent with the fluid flow physics and moreover accounts for gravity segregation effects. Jointly with the pressure data, the inversion estimates a parametric one-dimensional distribution of permeability and porosity. The fluid flow volume is directly inverted from the fluid-flow-constrained inversion of the electromagnetic data. The approach is not limited by the traditional interpretation of the formation test, which is based on a single-phase model without taking into account invasion or assuming that the fluid, for example mud-filtrate, has been cleaned up from the formation testing zone. The joint inversion of the electromagnetic and pressure data provides for a more reliable interpretation of formation permeability. One advantage of the approaches described herein, is its possible generalization to three-dimensional geometries, for example dipping beds and highly deviated wells.
Abstract:
Aspects described herein provide for methods and apparatus for interpretation of borehole sonic dispersion data using data-driven machine learning based approaches. Training datasets are generated from two possible sources. First, application of machine learning enabled automatic dipole interpretation (MLADI) and/or machine learning enabled automatic quadrupole interpretation (MLAQI) methods on field data processing will naturally create substantial volume of labeled data, i.e., pairing dispersion data with dispersion modes labeled by MLADI and MLAQI. Second, it is also possible to generate large volume of synthetic dispersion data from known model parameters. These two types of labeled data can be used either separately or in combination to train neural network models. These models can map dispersion data to modal dispersion much more efficiently.
Abstract:
The present disclosure relates to a method that includes receiving ultra-deep azimuthal resistivity (UDAR) measurements from a downhole tool within a geological formation. The method also includes determining a data processing window based on a relative location of a transmitter of the downhole tool with respect to a location of one or more components of the downhole tool. Further, the method includes performing a three-dimensional (3D) inversion of the UDAR measurements based on the relative location of the transmitter. Further still, the method includes generating an anisotropic resistivity distribution and relative formation dip output based on the 3D inversion.
Abstract:
Methods and systems are provided characterizing a formation traversed by a wellbore, wherein the formation includes at least a flushed zone and an uninvaded zone, which involve obtaining well log data based on plurality of different well log measurements of the formation at multiple depths in the wellbore. The well log data is used to a computational model that solves for a set of petrophysical parameters that characterize a portion of the formation corresponding to the multiple depths in the wellbore, wherein the set of petrophysical parameters include a cementation exponent, a saturation exponent, and a flushed zone water resistivity. The solved-for set of petrophysical parameters can be used to determine a value of water saturation of the uninvaded zone for the portion of the formation corresponding to the multiple depths in the wellbore.