Abstract:
A laser device is provided that includes an element made of laser-active material and a cladding element bonded to the element so as to allow heat exchange by heat conduction between the cladding element and the element. The laser-active material emitting laser light when excited by pump light. The element being made of a glass. The cladding element being made of a material that exhibits an absorption coefficient for the pump light that is lower than a corresponding absorption coefficient of the glass. The element and cladding element being configured so that the pump light can be directed through the cladding element into the element and/or so that the pump light can be directed through the element into the cladding element.
Abstract:
An optical element is provided that includes a substrate that is transparent in the visible spectral region and a multilayer anti-reflection coating on the substrate. The coating has alternating layers of layers having a first refractive index and of layers having a second, higher refractive index. The layers having the higher refractive index contain nitride or oxynitride and the layers having the first refractive index contain oxide of silicon and of at least one other element. The molar fraction of silicon in the layers having the first refractive index is predominant when compared to the molar fraction(s) of the other element or elements. The uppermost layer of the coating is a layer having the first refractive index. A layer of chain-form organofluoro molecules is disposed on the coating, wherein the molecules are bonded at the ends to the surface of the optical element.
Abstract:
The present disclosure relates to a glass having a refractive index of at least 1.7 as well as the use of the glass as a cladding glass of a solid-state laser. The disclosure also relates to a laser component comprising a core of doped sapphire and a cladding glass being placed on said core. The cladding glass is arranged on said core such that light exiting from the core due to parasitic laser activity can enter the cladding glass and can be absorbed there. Thus, a laser component with improved efficiency is obtained. The present disclosure also relates to a method for producing the laser component.
Abstract:
The present invention relates to a glass having a refractive index of at least 1.7 as well as the use of the glass as a cladding glass of a solid-state laser. The invention also relates to a laser component comprising a core of doped sapphire and a cladding glass being placed on said core. The cladding glass is arranged on said core such that light exiting from the core due to parasitic laser activity can enter the cladding glass and can be absorbed there. The present invention also relates to a method for producing the laser component.
Abstract:
A thin glass sheet includes a first and a second surface side, wherein the thin glass sheet is asymmetrically structured in that the two surface sides differ from one another, wherein both surface sides are chemically strengthened and wherein respectively a depth of layer exists of the alkali ions that are introduced through chemical strengthening, whereby the depth of layer of the first surface side (DoL1) and the depth of layer of the second surface side (DoL2) are coordinated with each other in such a way that they are equal or are adapted on both surface sides, and that on both surface sides respectively a coating consisting of one or several layers is provided, wherein the coating on the first surface side differs from the coating on the second surface side in at least one property or characteristic.
Abstract:
An optical element includes an optically transparent substrate of alkali containing glass and a coating on a surface, the coating enabling anodic bonding of the alkali containing glass within an area of the surface that is covered with the coating and with the anodic bond forming at the outer surface of the coating.
Abstract:
A dielectric mirror is provided that, on the one hand exhibits a high destruction threshold when being irradiated with ultrashort high-power laser pulses, and on the other hand has a large bandwidth of group delay dispersion. The dielectric mirror includes a layer stack with a sequence of layers having different refractive indices, which act as a reflecting interference filter, wherein the layers are formed of at least three different materials exhibiting different destruction thresholds.
Abstract:
An optical component with improved degradation resistance is provided. The optical component includes an optical material and a coating. The optical material has a native surface that is susceptible to degradation processes. The coating is a layer of an inorganic material and is applied so as to be substantially contiguous so that there are no continuous paths between fluid surrounding the optical component and the optical material.
Abstract:
The present invention relates to a glass having a refractive index of at least 1.7 as well as the use of the glass as a cladding glass of a solid-state laser. The invention also relates to a laser component comprising a core of doped sapphire and a cladding glass being placed on said core. The cladding glass is arranged on said core such that light exiting from the core due to parasitic laser activity can enter the cladding glass and can be absorbed there. The present invention also relates to a method for producing the laser component.
Abstract:
An optical element is provided that includes a substrate that is transparent in the visible spectral region and a multilayer anti-reflection coating on the substrate. The coating has alternating layers of layers having a first refractive index and of layers having a second, higher refractive index. The layers having the higher refractive index contain nitride or oxynitride and the layers having the first refractive index contain oxide of silicon and of at least one other element. The molar fraction of silicon in the layers having the first refractive index is predominant when compared to the molar fraction(s) of the other element or elements. The uppermost layer of the coating is a layer having the first refractive index. A layer of chain-form organofluoro molecules is disposed on the coating, wherein the molecules are bonded at the ends to the surface of the optical element.