Abstract:
The present disclosure pertains to systems and methods for publishing time-synchronized information. In one embodiment, a system may include a time interface configured to receive a common time signal and a network interface configured to transmit a plurality of data packets using a network. A publishing subsystem may be configured to cause the system to publish at least one data value according to a schedule and the common time signal. A processing sequence number subsystem may be configured to generate a processing sequence number to be included in the plurality of data packets and to reset the processing sequence number at a fixed interval based on the common time signal. A data packet subsystem may be configured to generate a plurality of data packets comprising a respective processing sequence number and the at least one data value.
Abstract:
Systems and methods are described herein to accommodate different settings associated with a converter-based electric power generator and an inverter-based electric power generator for electric power generation within an electric power delivery system. The electric power delivery system may provide electric power generated by a bulk electric system to the loads via distributed substations using a first operating frequency. Moreover, the distributed substations may include inverter-based electric power generators to supply the electric power demand of downstream loads in an islanded configuration. That said, the inverter-based electric power generators may supply the electric power using a second frequency that is higher than the first frequency. Protective systems, positioned downstream from the distributed substations, may use different settings associated with the bulk electric system or the inverter-based electric power generators based on detecting the frequency of the supplied electric power.
Abstract:
Systems and methods are described herein to accommodate different settings associated with an inverter-based electric power generator and an inverter-based electric power generator for electric power generation within an electric power delivery system. The electric power delivery system may provide electric power generated by a bulk electric system to the loads via distributed substations using a first operating frequency. Moreover, the distributed substations may include inverter-based electric power generators to supply the electric power demand of downstream loads in an islanded configuration. That said, the inverter-based electric power generators may supply the electric power using a second frequency that is higher than the first frequency. Protective systems, positioned downstream from the distributed substations, may use different settings associated with the bulk electric system or the inverter-based electric power generators based on detecting the frequency of the supplied electric power.
Abstract:
Systems and methods are described herein to accommodate different settings associated with a converter-based electric power generator and an inverter-based electric power generator for electric power generation within an electric power delivery system. The electric power delivery system may provide electric power generated by a bulk electric system to the loads via distributed substations using a first operating frequency. Moreover, the distributed substations may include inverter-based electric power generators to supply the electric power demand of downstream loads in an islanded configuration. That said, the inverter-based electric power generators may supply the electric power using a second frequency that is higher than the first frequency. Protective systems, positioned downstream from the distributed substations, may use different settings associated with the bulk electric system or the inverter-based electric power generators based on detecting the frequency of the supplied electric power.
Abstract:
The present disclosure pertains to systems and methods for publishing time-synchronized information. In one embodiment, a system may include a time interface configured to receive a common time signal and a network interface configured to transmit a plurality of data packets using a network. A publishing subsystem may be configured to cause the system to publish at least one data value according to a schedule and the common time signal. A processing sequence number subsystem may be configured to generate a processing sequence number to be included in the plurality of data packets and to reset the processing sequence number at a fixed interval based on the common time signal. A data packet subsystem may be configured to generate a plurality of data packets comprising a respective processing sequence number and the at least one data value.
Abstract:
The present disclosure pertains to systems and methods for publishing time-synchronized information. In one embodiment, a system may include a time interface configured to receive a common time signal and a network interface configured to transmit a plurality of data packets using a network. A publishing subsystem may be configured to cause the system to publish at least one data value according to a schedule and the common time signal. A processing sequence number subsystem may be configured to generate a processing sequence number to be included in the plurality of data packets and to reset the processing sequence number at a fixed interval based on the common time signal. A data packet subsystem may be configured to generate a plurality of data packets comprising a respective processing sequence number and the at least one data value.
Abstract:
A quadrilateral distance module may be used to detect faults in an electrical power system. A resistive coverage of the quadrilateral distance module may be defined by an adaptive resistance blinder. Tilt of the adaptive reactance element and resistance blinders may be limited. When an angle between the sequence-component based, current polarizing quantity and the element loop current does not exceed a predetermined angle threshold, the sequence-component based polarizing quantity may be used. Otherwise, the element loop current may be used to limit the tilt. Fault detection may comprise comparing both the adaptive resistance blinders for forward and reverse load flow conditions to power system stimulus and detecting a fault when the stimulus satisfy either blinder.
Abstract:
Systems and methods are described herein to accommodate different settings associated with an inverter-based electric power generator for electric power generation within an electric power delivery system. The electric power delivery system may provide electric power generated by a bulk electric system to the loads via distributed substations using a first operating frequency. Moreover, the distributed substations may include inverter-based electric power generators to supply the electric power demand of downstream loads in an islanded configuration. That said, the inverter-based electric power generators may supply the electric power using a second frequency that is higher than the first frequency. Protective systems, positioned downstream from the distributed substations, may use different settings associated with the bulk electric system or the inverter-based electric power generators based on detecting the frequency of the supplied electric power.
Abstract:
A quadrilateral distance module may be used to detect faults in an electrical power system. A resistive coverage of the quadrilateral distance module may be defined by an adaptive resistance blinder. Tilt of the adaptive reactance element and resistance blinders may be limited. When an angle between the sequence-component based, current polarizing quantity and the element loop current does not exceed a predetermined angle threshold, the sequence-component based polarizing quantity may be used. Otherwise, the element loop current may be used to limit the tilt. Fault detection may comprise comparing both the adaptive resistance blinders for forward and reverse load flow conditions to power system stimulus and detecting a fault when the stimulus satisfy either blinder.