Downhole multiphase flow sensing methods

    公开(公告)号:US10526888B2

    公开(公告)日:2020-01-07

    申请号:US15666328

    申请日:2017-08-01

    摘要: Provided are systems and methods for in-situ zonal assessment of multiphase fluid flow in one or more production zones of a production well, including for at least one production zone sensing one or more fluid flow parameters via at least one sensor disposed in a production zone; at least one sensor communications node being in electrical communication with an associated sensor, the at least one sensor communications node positioned along a tubular body in the production zone proximate an associated at least one sensor, and receiving signals from the associated at least one sensor; sending the acoustic signals from the at least one sensor communications node to a receiver at a surface via a series of intermediate communications nodes, node-to-node, the signals being indicative of one or more fluid flow parameters, the series of intermediate communications nodes being spaced along the tubular and configured to transmit acoustic waves; assessing one or more fluid flow parameters for the one or more production zones in response to signals received from a topside communications node.

    Downhole Multiphase Flow Sensing Methods
    9.
    发明申请

    公开(公告)号:US20180058209A1

    公开(公告)日:2018-03-01

    申请号:US15666328

    申请日:2017-08-01

    摘要: Provided are systems and methods for in-situ zonal assessment of multiphase fluid flow in one or more production zones of a production well, including for at least one production zone sensing one or more fluid flow parameters via at least one sensor disposed in a production zone; at least one sensor communications node being in electrical communication with an associated sensor, the at least one sensor communications node positioned along a tubular body in the production zone proximate an associated at least one sensor, and receiving signals from the associated at least one sensor; sending the acoustic signals from the at least one sensor communications node to a receiver at a surface via a series of intermediate communications nodes, node-to-node, the signals being indicative of one or more fluid flow parameters, the series of intermediate communications nodes being spaced along the tubular and configured to transmit acoustic waves; assessing one or more fluid flow parameters for the one or more production zones in response to signals received from a topside communications node.