Abstract:
An apparatus and method provide for performing, using a heat-assisted magnetic recording head, multiple sequential writes to a recording medium, and recording a metric of write performance for each of the writes. The apparatus and method further provide for calculating fluctuations in the metric, detecting whether the head has a laser mode hopping problem using the metric fluctuations, and categorizing a severity of the laser mode hopping problem.
Abstract:
A storage device includes a storage medium and a storage device controller that selectively varies a value of at least one write current parameter to generate alternating data tracks of variable written track width. According to one implementation, the alternating data tracks of variable written track width are generated with a single writer.
Abstract:
An apparatus and method provide for performing, using a heat-assisted magnetic recording head, multiple sequential writes to a recording medium, and recording a metric of write performance for each of the writes. The apparatus and method further provide for calculating fluctuations in the metric, detecting whether the head has a laser mode hopping problem using the metric fluctuations, and categorizing a severity of the laser mode hopping problem.
Abstract:
A storage device includes a storage controller configured to write a band of data tracks using a first recording method until criterion is met. The first method may be a conventional recording method. After the criterion is met, the storage controller is configured to write data to the band using a second recording method. The second recording method may be an enhanced capacity recording method such as interlaced magnetic recording (IMR) or shingled magnetic recording (SMR).
Abstract:
A storage device disclosed herein stores data on a storage media using interlaced magnetic recording (IMR) and it includes a storage controller configured to determine power levels applied to the power source such that power levels applied to heat various tracks can be different from each other. An implementation of the storage device determines the track density, linear densities and power levels for even and odd tracks in IMR HAMR for the storage media.
Abstract:
A storage device disclosed herein stores data on a storage media using interlaced magnetic recording (IMR) and it includes a storage controller configured to determine power levels applied to the power source such that power levels applied to heat various tracks can be different from each other. An implementation of the storage device determines the track density, linear densities and power levels for even and odd tracks in IMR HAMR for the storage media.
Abstract:
A cross-track profile of a known good test track on a recording medium is read during operation of a data storage device. Two or more center locations of the test track are determined at two or more different amplitude levels via a read transducer. A health condition of the read transducer is determined by comparing the two or more center locations of the test track with one another.
Abstract:
An apparatus comprises a controller configured to apply a writing configuration (WC) to a heat-assisted magnetic recording head to write data to a recording medium. The recording medium includes a plurality of sectors. The controller is further configured to determine an optimized WC for each of the plurality of sectors and initiate a write operation to one of the plurality of sectors. The write operation is configured to be performed by the head utilizing the optimized WC for the respective sector.
Abstract:
A storage device includes a storage controller configured to write a band of data tracks using a first recording method until criterion is met. The first method may be a conventional recording method. After the criterion is met, the storage controller is configured to write data to the band using a second recording method. The second recording method may be an enhanced capacity recording method such as interlaced magnetic recording (IMR) or shingled magnetic recording (SMR).
Abstract:
Data is written to data sectors of a heat-assisted magnetic recording (HAMR) medium using a laser of a HAMR head supplied with a sum of an operational current and a threshold current. A service current is supplied to the laser when the head is over servo sectors of the medium, such that a temperature of the medium at the servo sectors is greater than or equal to a temperature of the head when over the servo sectors.