Abstract:
The disclosed technology includes an open frame storage device assembly for computing equipment. The assembly is configured to vertically suspend carriers, which hold storage devices, from a rack and to interconnect the storage devices to a computer system. The disclosed assembly provides high storage capacity, low weight, efficient cooling, and centralized power.
Abstract:
Apparatus for retracting and extending sets of operational processing devices in a multi-device enclosure. In accordance with some embodiments, an enclosed housing is provided with opposing first and second ends. Sleds are individually movable between a retracted position within the enclosed housing and an extended position in which the sled projects from the first end. Each sled supports a group of processing devices. A control board is disposed within the enclosed housing adjacent the second end. A plurality of flex circuits contactingly engage the processing devices to provide communication paths between the processing devices and the control board in both the retracted and extended positions of the sleds.
Abstract:
Apparatus for retracting and extending sets of operational processing devices in a multi-device enclosure. In accordance with some embodiments, an enclosed housing is provided with opposing first and second ends. Sleds are individually movable between a retracted position within the enclosed housing and an extended position in which the sled projects from the first end. Each sled supports a group of processing devices. A control board is disposed within the enclosed housing adjacent the second end. A plurality of flex circuits contactingly engage the processing devices to provide communication paths between the processing devices and the control board in both the retracted and extended positions of the sleds.
Abstract:
The disclosed technology includes an open frame storage device assembly for computing equipment. The assembly is configured to vertically suspend carriers, which hold storage devices, from a rack and to interconnect the storage devices to a computer system. The disclosed assembly provides high storage capacity, low weight, efficient cooling, and centralized power.
Abstract:
Apparatus and method for maintaining processing devices at a nominally common temperature, such as but not limited to storage devices in a multi-device networked storage enclosure. In accordance with some embodiments, an enclosed housing has a first side adjacent a cold zone with a lower ambient temperature and an opposing second side adjacent a warm zone with a higher ambient temperature. First and second processing devices are arranged within the enclosed housing so that the first processing device is adjacent the cold zone and the second processing device is adjacent the warm zone. First and second thermal interface material (TIM) modules are contactingly affixed to the first and second devices and are provided with different heat conductivities so that the first and second devices are maintained at a nominally common operational temperature.
Abstract:
Apparatus and method for performing secure erasure of a processing device, such as a data storage device in an object storage system. In accordance with some embodiments, an apparatus is provided with a plurality of processing devices arranged within an enclosed housing and each having an associated memory. A mechanical switch is coupled to the enclosed housing. The associated memories of the processing devices are securely erased responsive to activation of the mechanical switch.
Abstract:
Apparatus and method for maintaining processing devices at a nominally common temperature, such as but not limited to storage devices in a multi-device networked storage enclosure. In accordance with some embodiments, an enclosed housing has a first side adjacent a cold zone with a lower ambient temperature and an opposing second side adjacent a warm zone with a higher ambient temperature. First and second processing devices are arranged within the enclosed housing so that the first processing device is adjacent the cold zone and the second processing device is adjacent the warm zone. First and second thermal interface material (TIM) modules are contactingly affixed to the first and second devices and are provided with different heat conductivities so that the first and second devices are maintained at a nominally common operational temperature.